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Abstract 

Weight reduction can significantly contribute to reducing Green House Gas (GHG) 

emissions from vehicles. In addition to the significant increase in the demand on 

transportation due to the increase in global population, there is an urgent need to reduce 

the weight of vehicles to increase their fuel efficiency and therefore to reduce global 

GHG emissions. Driven by ecological and economic interests, there has been an 

increasing use of plant based material systems in various applications over the past 

decade. Currently, one of the main challenges in using these material systems for use in 

automotive components is to understand the forming behaviour of this class of material 

systems.  

 

This work is designed to answer two key questions regarding the forming of natural 

fibre composites. The first one is when does failure initiate in this class of material 

systems, and what is the most effective measure for predicting it? To answer this 

question, hourglass samples with varying sample widths are stretched and then formed 

through the stamping press machine. The ARAMIS™ system beneath the press machine 

provides displacement and strain deformation which could be used to determine the 

failure behaviour of the composites. This study proposes a new FLC for woven 

composites, which is more effectively in predicting the failure behaviour of the natural 

fibre composite than the conventional method as it can successfully eliminate the path 

dependency effect. This innovative failure criterion has been proven to be more 

effective than the existing failure criterion through FEA simulations. The second 

question that the current work tries to answer is how to improve the formability of 

natural fibre composites. The approach here is to perform dome forming tests in 

different treatment conditions, namely preheating, water treatment, and tailored blanks. 
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XIV 
 

It is found that, among all treatment, the water treatment works the best, and is more 

effective than the conventional treatment of preheating. Woven composite with a 

tailored shape becomes much more formable due to its woven nature of fibre 

reinforcement, while such improvement is insignificant in nonwoven composites. This 

study lays a foundation for rapid forming of this class of material system, and will in 

turn lead to possible weight savings in future vehicles. 
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Chapter 1  

Introduction 

1.1 Motivation 

Today, there is an urgent need to reduce the weight of vehicles to improve fuel 

efficiency, thereby reducing global greenhouse gas (GHG) emissions. Natural fibres 

such as flax, hemp, jute, sisal, kenaf, bamboo, and ramie have been investigated as 

reinforcements for fibre reinforced polymer composites, some of which seem to have 

the potential of being used in automobiles [1-5]. Natural fibres are mainly made of 

cellulose, hemicellulose, lignin, pectin and a small amount of extractives [6-8], and they 

can offer attractive properties such as low density, low price and ease of processing [6]. 

In addition, the biodegradability of natural fibres allows them to be recycled and 

probably reused at the end-of-life. The global natural fibre composite market reached 

$2.1 billion in 2010 with a 15% compound annual growth rate between 2006 and 2010. 

The size of this market is expected to reach $3.8 billion by 2016 as a result of the rising 

price of petroleum based products, and more importantly, strong government support 

for use of eco-friendly materials [9]. For instance, the European Union and some Asian 

countries require that, by 2015, 85% of a vehicle must be reused or recycled [10]. An 

extensive amount of research has been conducted to realise strategies and technological 

challenges for mass production automobile by using lightweight composites [11-14]. 

One of the many challenges in the widespread use of advanced lightweight material 

systems in vehicle manufacturing is a suitable manufacturing technique. The stamp 

forming technique is one process that has been successfully used in rapid forming of 

different material systems [15-17]. The current study investigates the forming 

behaviour of natural fibre composites, with a particular focus on the challenges 

encountered during rapid forming processes.  
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1.2 Research objectives 

This thesis is designed to answer two key questions regarding the forming of natural 

fibre composites. The first question is when does the failure occur in this class of 

material system, which can also be translated to what is the most effective measure for 

predicting the onset of its failure behaviour. Materials are considered to have failed 

when surface fractures begin to appear. The first phenomenon is investigated through 

stretch forming tests on hourglass samples that have a range of sectional widths. 

Experimental data is used to help determine the limiting strain condition in each 

deformation mode varying from biaxial-stretch to pure shear.  

 

The second question is how to improve the formability of natural fibre composites, or 

what is the most effective treatment for improving the formability of this class of 

material system. Three different treatments - preheating, water treatment, and tailored 

blanks are applied to two flax fibre reinforced polypropylene composites (with different 

fibre reinforcement natures) in dome forming tests, and the effect of these treatments are 

compared. Based on strain deformation provided by the ARAMIS™ system, reasons for 

the difference in effectiveness are determined.   

 

1.3 Thesis Structure 

In the following Chapter (Chapter 2), an overview of the properties of natural fibres and 

their reinforced composites is given, together with literature review of the forming 

behaviour of this class of material system. The aim of the review is to provide, for 

laminates as well as pre-consolidated materials, a brief understanding of the forming 

processes used for processing natural fibre composites. Chapter 3 describes the methods 

used for processing flax fibre reinforced polypropylene composites, and gives details of 

how the forming experiments conducted in this study were done. A strain measurement 
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system, the ARAMIS system, is used study the forming behaviour of composite 

materials. Chapters 4, 5, and 6 give detailed observations of the forming tests performed 

on the two natural fibre composites used. FEA simulations are also developed to obtain 

the information which cannot be observed during forming as well as to examine the 

effectiveness of failure criteria proposed in this study. The aim of these three Chapters 

is to provide answers to the two key questions set out in Section 1.2. Finally, 

conclusions and recommendations for future work are presented in Chapter 7. 
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Chapter 2  

Literature Review 

2.1 Introduction 

This Chapter presents an overview of background knowledge related to forming of 

composite materials, both in experiments and in FEA simulations. The properties of 

fibres and their reinforced composites are studied. The methods that have been used in 

forming composite materials are reviewed, with a particular interest in the failure 

behaviour of composite materials. Finally, the procedure of developing FEA 

simulations is described in detail.   

 

2.2 Fibre reinforced composites 

Most materials can be categorised into one of the following four classes: metal, ceramic, 

polymer and composite. Composite materials are made of two or more different 

materials, and usually consist of fibres to carry the load and a matrix to transfer the load 

between the fibres. Therefore, the fibres usually have high strength and stiffness, 

whereas the matrix has a higher elongation to failure.  Based on the type of polymer 

used to create the matrix, fibre reinforced composites can be classified into two different 

categories of thermoset and thermoplastic. Common matrices for thermoset materials 

include vinylester, epoxies, polyesters and so on, whereas thermoplastic materials 

usually have matrices such as Polypropylene (PP), Poly-ether-ether-ketone (PEEK), and 

Polyphenyle Sulphide (PPS) [18].  

 

Thermoset composites use chemical cross-linking of low weight monomers and a 

prepolymer to form a high weight polymer network, resulting in a very low viscosity 

liquid. Thermoset matrices are typically liquid or malleable prior to curing, during 
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which thermoset resin is heated to melting and then recrystallizes which occurs through 

the cross-link of the molecular chain. Due to the nature of the cross-linking of the 

polymer molecules in thermosets, the polymer cannot convert back to a liquid form 

after the initial cure, meaning that thermoset composites must be cured in their final 

configuration in a mold [12]. This irreversible process is usually achieved through the 

application of temperature through heating or UV light radiation, or pressure or a 

combination of both. This process can also be carried out through a catalyst or agent. 

The advantages of thermoset composites include very low creep, stress relaxation, 

increased bond strengths between the fibres and matrices, maintaining the mechanical 

characteristics at high temperatures, and exhibiting good chemical resistance [18, 19].  

 

In contrast, thermoplastic composites are typically solid and liquefy when heated above 

their melting temperatures, and then re-solidify when the temperature drops below the 

re-crystallization temperature. Thermoplastic composites have many advantages over 

thermoset, including high temperature damage tolerance, high fracture resistance, low 

manufacture cost, high recyclability, infinite shelf life, ease of material handling, better 

toughness, and large strain to failure [18, 19]. Due to the difference in the nature of 

thermoplastic and thermoset, the manufacturing procedures of composites can be 

illustrated from the Figure 2.1. Thermoset composites require heating such that the 

matrices can flow. Because of the matrix cures into a fixed cross-linked solid, the curing 

process limits the time available for material processing and adding new features [20]. 

The extended forming time of thermoset composites compared to thermoplastic 

composites is one of the major reasons of the increased use of thermoplastic composites, 

especially in industries where there is a need of mass production to meet market demand. 
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Figure 2.1: Composite manufacturing process [20]. 

 

2.2.1 Natural fibres 

Driven by ecological and economic interests, natural fibres are gaining increasing 

acceptance worldwide. In automotive applications of North America alone, it is found 

that 3.07 million tons of CO2 emissions and 1.19 million m3 of crude oil could be saved 

by substituting 50% of synthetic fibres with natural fibres or their composites [15]. 

Natural fibres can be divided into different categories based on their origin, as shown in 

Figure 2.2. Animal fibres, usually from hair, silk or wool are composed of proteins [16]. 

Natural fibres can also be extracted from several parts of plants, and these fibres, 

especially bast fibres, have been considered as reinforcements for polymeric composites 

over animal fibres in numerous applications due to their improved mechanical 

properties [17]. The plants which produce natural fibres can be categorised into primary 

plants and secondary plants based on whether the fibres are produced as a major product 

or as a by-product [8].     
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Figure 2.2: Subdivisions of natural fibres based on their origin, from [16]. 

 

Natural fibres derived from plants have a complex layer structure with one primary 

layer along with three secondary cell walls [17], as shown in Figure 2.3. Cellulose, 

hemicelluloses, and lignin are major components in each cell wall, where microfibrils 

(made of cellulose molecules) act as fibres that are embedded in a matrix which consists 

of lignin and hemicelluloses [16]. Each of these components can affect the properties of 

lignocellulosics fibres, as summarised in Table 2.1. With knowledge of the chemical 

composition of natural fibres, their degradation characterisation can therefore be 

predicted. Unlike synthetic fibres, natural fibres have a hollow structure due to the 

presence of a lumen [21].  

 

Natural 
Fibres

Animal

Hair Wool Silk

Plant

Grass   
Bagasse, 
Bamboo

Stem       
Hemp, 
Jute, 

Kenaf, 
Flax

Fruit
Oil Palm, 

Coir

Leaf
Banana, 

Sisal

Others
including 

Stalk, 
Root and 

Seed
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Figure 2.3: Structure of a typical biofibre [16]. 

 

Properties Components 

Strength Cellulose [16, 22, 23] 

Thermal degradation Hemicellulose [23] 

Biodegradation Hemicellulose [22, 23] 

Moisture absorption Hemicellulose [22, 23] 

Fibre degradation Hemicellulose and lignin [21, 24] 

Table 2.1: Cell wall polymers responsible for the properties of lignocellulosics fibres 

 

The properties of fibres lack consistency and have a high level of variability. 

Intrinsically, major structural differences such as density, length and diameter result in 

differences in physical properties [8]. The properties of fibres can also be affected by 

changes in the environments of growth including the location, moisture level, and time 

to harvest [25]. For instance, a higher degree of voids is found in plant fibres harvested 

in wet habitats [22]. This can result in variations in mechanical properties of the fibres 
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as well as a higher saturation level when the fibre undergoes a moisture absorption 

process [22, 25].   

 

Each component that comes from natural fibres is compostable, meaning the application 

of natural fibres makes energy saving possible. Beside biodegradation the recyclability 

of natural fibres could extend their useful lives, minimizing raw material consumption, 

and storing carbon for a longer period of time. This could in turn leads to a reduction in 

global impact on environment. Le Duigou et al. [26] studied the recycling capacity of 

flax/PLLA (poly(L-lactide)) bio-composites with a fibre weight fraction of 20% and 

30%. Mechanical properties of composites were evaluated at beginning of the test and 

right after each of repeated injection process. The property retention observed in the 

experiment indicates the promising recyclability of this class of material systems. 

Furthermore, Bourmaud et al. [27, 28] have shown that composites of Polypropylene 

and vegetal fibres are recyclable following the European directive of using/recycling of 

at least 95% of a worn vehicle weight by 2015. This finding agrees with the conclusions 

from Srebrenkoska et al. [29, 30]. It was found that recycling of rice hulls or kenaf 

fibres reinforced polypropylene composites is promising due to their properties remain 

largely unchanged after the recycling process. It is also noted that PLA-based 

composites are more sensitive to processing cycles than PP-based composites. 

 

2.2.2 Natural fibre reinforced polymer composites 

Compared to thermoset polymers, thermoplastic polymers have several advantages, and 

the one most relevant to rapid forming is their ability to be reshaped [31]. Recyclability 

is another major advantage of thermoplastic over thermoset [24]. Polypropylene (PP) is 

a good choice for the matrix of natural fibre reinforcements due to its low cost, low 
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processing temperature (to facilitate the low thermal stability of natural fibres), and 

strong hydrophobic character (which protects the hydrophilic natural fibres) [25].      

 

Many attempts have been made to study the shortcomings of natural fibres, efforts 

directed to maximise their applications in a range of industries. In general, there are two 

major issues associated with natural fibre composites: low thermal resistance as well as 

moisture absorption. Due to their inherently low elongation-to-failure, natural fibre 

composites usually require additional treatments before forming into parts having a high 

level of complexity. In auto parts manufacturing, the poor thermal resistance of natural 

fibre composites is a critical barrier for widespread use because the conventional 

treatment, preheating, is often not applicable to this class of material system. 

Thermogravimetric analysis (TGA) has been frequently used to study the thermal 

stability of natural fibres. In a typical situation, the fibre suffers a slow weight drop 

when it is subjected to heat, followed by a sharp drop over a narrow range of 

temperatures and finally returns back to the stable state as reactants are exhausted [17]. 

Due to similar characteristics, natural fibres usually share a similar TGA curve in which 

almost 60% of the thermal decomposition takes place between 215˚C and 300˚C [32]. It 

has been reported that lignin starts degrading at lower temperatures compared to the 

other major constituents of natural fibres, cellulose and hemicellulose [33]. A better 

thermal resistance can therefore be anticipated in natural fibres with low lignin content, 

such as flax fibres [34], or in those natural fibres in which the lignin has been removed 

by chemical treatments [33]. The thermal degradation of natural fibres is therefore an 

important issue associated with manufacturing natural fibres reinforced composites, 

especially since preheating is traditionally used to improve the formability of 

composites during rapid forming.  
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The variations in structure as well as properties of natural fibres result in variation in the 

performance of natural fibre reinforced composites when they are subjected to moisture 

absorption processes. Athijayamani et al. [35] studied the performance of a roselle/sisal 

fibre reinforced polyester hybrid composite when subjected to moisture ingression 

process, and the maximum weight gain reported was 4%. A significantly higher 

saturation level was observed by Wang et al. [36] for rice hulls/low density 

polyethylene composites which reached a stable weight gain of 17% after being 

immersed in distilled water for approximately 100 minutes.  

 

Reduced mechanical properties of sisal/polypropylene composites have been observed 

in tensile tests as a result of increased water uptake, time of immersion, and fibre 

loading [37], and the driving mechanisms behind these variations was determined as the 

weakening of the fibre/matrix interface. Le Duigou et al. [38] investigated a flax fibre 

reinforced PLA composite with 20% fibre loading, and the composite, when saturated, 

exhibited an almost halved strength, and significantly reduced stiffness, but a doubled 

elongation-to-failure (compared to the untreated condition). This research also showed 

that variations in elongation-to-failure were temporary, while those in strength and 

stiffness were permanent. Through SEM examination of fractured surfaces, the changes 

in mechanical behaviour of the composite were explained by fibre plasticization as well 

as increased ductility of the PLA matrix. Similar observations have also been reported 

on a sisal fibre reinforced polypropylene composite [39].  

 

Variations in mechanical properties are reported when natural fibres are exposed to 

different chemical solutions. Methacanon et al. [22] investigated variations in the tensile 

properties of water hyacinth, reed, roselle and sisal fibres caused by moisture absorption 

processes. A considerable increase in tensile strength was reported in all fibre yarns, and 
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the study attributed these observations to a higher amount and better orientation of 

crystalline cellulose in fibres. Extra extensions and elongations were also found in wet 

yarns compared to dry equivalents as the absorbed water behaved like a lubricant so that 

one fibre could slide over another. Goda et al. [40] determined the effect of alkylation 

on the tensile properties of ramie fibres, where the fibres were alkali-treated with a 15% 

NaOH solution. A 4-18% improvement in tensile strength accompanied with a 

reduction in stiffness was noticed in the treated fibres. A significant increase in ductility 

was also observed so that the treated fibres exhibited a more than doubled elongation-

to-failure. Such improvements in properties were considered to be a result of changes in 

the morphological and chemical structure of the fibres. These observations contradict 

those obtained by Ray et al. [41] in which an increased modulus and a reduced 

elongation-to-failure were noticed when jute fibres were subjected to an alkaline 

treatment (a 5% NaOH solution at 30˚C).   

 

Cellulosic fibres are incompatible with hydrophobic polymers due to their hydrophilic 

nature, which usually results in poor interfacial adhesion between two materials and 

hence leads to voids within the composite. It is therefore not surprising that natural fibre 

polymeric composites are also sensitive to moisture, and the corresponding damage can 

be accelerated at high temperatures [17]. As stated in Table 2.1, hemicellulose is the 

fibre component which is responsible for moisture absorption. A higher moisture 

absorption level is therefore expected for those natural fibres that have a higher content 

of hemicellulose. Biological activities such as fungal growth can contribute to 

biodegradation of composites after they have been exposed to moisture for a long period 

of time [42]. The hydrophilic nature of natural fibres makes their polymeric composites 

more prone to absorb moisture compared to polymers. An increased rate of moisture 

absorption was reported when the volume fraction of natural fibres increases [17]. Apart 
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from natural fibres, moisture exposure can also alter the interfacial conditions between 

different constituents of the composite. Under such circumstances, intermolecular 

hydrogen bonds are established between the water molecules and the cellulosic fibres, 

causing reduced adhesion between the fibre and the matrix [17]. A weakened 

fibre/matrix interface is also attributed to the fact that cellulosic fibres tend to swell 

when the composite absorbs solutions [43].  

 

Moisture absorption of natural fibre composites enables the introduction of chemical 

treatments. Xu et al. [44] modified a kenaf fibre surface with a silane coupling agent to 

enhance adhesion between the fibres and the polystyrene matrix. A condensation 

reaction between alkoxysilane and the hydroxyl groups of the kenaf fibres took place, 

resulting in a higher storage modulus and hence an improved interaction between 

different constituents. A similar observation of an improved storage modulus of natural 

fibre composites after silane treatment was found in abaca fibre reinforced polyester 

composites [45].  

 

Unlike other chemical treatments which only modify fibre surfaces, maleic acid (M.A) 

also modifies the polymer matrix, and lead to better bonding between the fibres and the 

matrix. Consequently, maleic acid can achieve better adhesion between two constituent 

materials compared to other treatments. Kiekens and Velde [46] treated dew-retted 

hackled long flax with propyltrimethoxysilane, phenylisocyanate and maleic acid 

anhydride modified polypropylene, and the highest increase in interfacial strength was 

observed in the maleic acid treated composite. This work also showed that when a 

flax/polypropylene composite is treated with maleic acid, chemical entanglements form 

within the maleic anhydride/polypropylene copolymer and that this physical link 

improves load transfer between the fibres.  
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2.3 Composite forming 

Composite Materials have shown great potential to be applied in auto-parts 

manufacturing, and their ability to be reshaped after melting during initial consolidation 

makes this class of material system recyclable after at the end of its life cycle. However 

the current manufacturing procedure for this class of material systems is labour-

intensive, complex, and expensive[47, 48]. Therefore, one of the challenges for 

widespread usage of advanced lightweight material systems in vehicle manufacturing is 

a suitable manufacturing technique. The stamp forming technique has been successfully 

used in rapid forming of metal alloys, and more recently extended to forming of 

composites and FML structures [12, 47-51]. In stamp forming tests, the material is 

formed into the desired shape by being pressed between a blank-holder and a die. 

Depending on whether the edge of the specimen is allowed to move or not, stamp 

forming can be divided into draw forming and stretch forming. In the former forming 

technique, the sample edge is allowed to move towards the die centre during forming, 

with the amount of edge movement being closely related to blank-holder force. The 

drawing behaviour of the material can effectively reduce surface strain deformation, 

helping achieve a larger forming depth, which is crucial in forming highly complex 

products. However, wrinkling can also be a undesired by-product of extensive drawing 

behaviour.  

 

Recently, studies have been conducted on forming composite fabrics. A spray of resin is 

usually required to keep the formed shape after removing it from the tools. Lee et al. [52] 

investigated the effect of blank-holder force on the stamp forming behaviour of a non-

crimp fabric. Square samples of 350 mm x 350 mm were used in stamp forming tests, 

and the fabrics were cut such that the tows were aligned at 0°/90° (named CS-N) as well 

as at 45°/-45° (named CS-D) to the edge of the square. During stamp forming tests, a 
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dead weight was placed on the annular blank-holder before the punch moved down to a 

depth of 75 mm. After forming, an unsaturated polyester resin was sprayed on to harden 

the formed structure which was then maintained for 30 minutes before being removed 

from the mold. It was an advantage to reduce the area in shear deformable area in 

symmetric shear deformation, and therefore CS-D was a more preferable configuration 

compared to CS-N. In addition, a processing path with few or even no wrinkles could be 

found by optimizating the blank-holder forces.  

 

In work conducted by Ouagne et al. [53], flax fibre fabrics with different architectures 

were formed into a complex tetrahedron. The significance of this shape was that it 

contained several geometrical sharp corners required by many automotive parts. The 

fabrics were formed through a tetrahedral punch with a base side of 265 mm, a base 

height of 20 mm and a total height of 128 mm. A resin spray was applied to the sample 

surface after forming so that the part could be removed from the tools while keeping its 

final structure. By comparing different fabric architectures, experimental observations 

suggested that the buckling effect can be reduced by choosing specific reinforcement 

architectures. Cao et al. [54] conducted an extensive review on characterising the 

mechanical behaviour of woven fabrics that comprised yarns with continuous 

commingled glass and polypropylene fibres. This study suggested that, in trellis frame 

tests and bias extension tests, composite materials were largely deformed by intra-ply 

shearing as the fibres in the weft and warp directions moved over each other. It was 

found that locking began to occur at approximately 45°, beyond which tows began to 

exert a compressive force on each other. When this compression force reached a 

maximum, wrinkling and out-of-plane buckling began to occur and the formed part was 

considered failure. 
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In addition to composite fabrics, the forming behaviour of pre-consolidated composite 

also becomes of great interest to researchers. Hou [55] performed draw forming tests on 

a pre-consolidated unidirectional glass fibre reinforced polypropylene composite. The 

prepreg was consolidated by firstly placing a mold filled with 8 layers in a press which 

was heated to 180°C. After a pre-heating period of 15 minutes, a pressure of 1.5 MPa 

was applied to the mold for 5 minutes, after which it was cooled to room temperature 

under pressure. The composite was heated above the melting temperature of 

polypropylene before forming by the cold metal tool. Most fibre buckling was observed 

at an angle of 45° to the fibre direction, and the centre of the composite experienced the 

most thickness reduction, while zero reduction in the flange region. 

 

Hwang and Hwang [31] also conducted high temperature forming experiments, 

although unlike most other studies where the whole composite was heated prior to 

forming, the specimen was locally heated. This method saved the energy usually wasted 

while transferring the sample from the heat chamber to the stamping press machine. 

Unidirectional carbon fibre/nylon (6 layers) composites were formed at different heated 

ranges, working temperature, and holding time, and the quality of the formed parts were 

evaluated macroscopically for part angle and microscopically for delamination and fibre 

buckling. Experimental observations indicated that, although wrinkling was still 

observed at the flange region, the locally heated part was comparable to the wholly 

heated part in terms of maximum load as well as final angle.  

 

Hou [55] studied the forming behaviour of glass fibre reinforced polyetherimide (PEI) 

through stamp forming tests where the composite was heated to a maximum of 120°C 

prior to the forming operation. It was concluded that a proper temperature and blank 

holder force was crucial to good quality in the formed parts. This finding was agreeable 
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with another research work which analysed the stamp forming of preconsolidated sheets 

of unidirectional glass fibre reinforced polypropylene composites under various 

experimental parameters such as forming speed and forming temperature [56]. This 

study created a novel rod-bed model to form complex three-dimensional parts. This 

study found that high preheat temperature was essential for good formability due to 

intra-ply shear deformation at high forming temperatures. It was also noted that the out-

of-plane fibre wrinkling was eliminated at a forming temperature of 180°C. Sadighi et 

al. [57] investigated the effects of laminate stacking sequence on the forming of glass 

fibre reinforced polypropylene composite at elevated temperatures. It was concluded 

that the flange regions in the composite changed with different laminate stacking 

combinations. There was a significant reduction in the drawing behaviour along the 

45°/-45° stacking scheme while the 0°/90° stacking sequence exhibited significant draw. 

No obvious change was observed in the wrinkling behaviour of the composites with 

varying stacking combinations.  

 

Stamp forming tests are usually performed on consolidated composites [58], like the 

studies mentioned above, and these require a separate consolidation process prior to 

forming. This means that the voids within the material could be eliminated before 

molding, but at a higher cost. An alternative is therefore to perform consolidation and 

forming in a single process, which offers potential for cost reduction. For instance, 

Trudel-Boucher et al. [59] transferred and then formed E-glass reinforced 

polypropylene fabrics immediately after reaching a temperature of 200°C in a natural 

conventional oven. There were four separate stages during the forming process 

including closing the mold, applying pressure, holding the pressure and finally opening 

the mold. Composites made from un-consolidated fabrics were compared with pre-

consolidated composites, and showed comparable flexural properties at low fabric 
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densities, but lower flexural strength at high fabric densities. This result suggests stamp 

forming process using this class of material system is promising.  

 

Wakeman et al. [60] formed a glass fibre reinforced polypropylene composite through a 

similar method where the material was heated in an oven before forming and 

consolidated with a cold tool. The optimum compression parameters were identified 

when the reductions in cycle time were given higher priorities over the pressures and 

times required for minimum porosity. This work also pointed out that the transfer time 

between oven and press must be minimised to prevent the material from cooling too 

much. On average, the transfer time was approximately 30 seconds. By putting the oven 

next to the press machine, Cabrera et al. [61] managed to transfer the mold with a 

heated all-polypropylene laminate inside in approximately 3 seconds with a negligible 

drop in temperature.  

 

Stretch forming tests, on the other hand, require that the sample edge is completely 

fixed during forming. This forming technique has been widely applied to metals [62-67], 

and recently to Fibre-Metal Laminates (FML) [19, 68-70] Polymer-Metal Laminate 

(PML) [71, 72], and composites [47, 73]. Due to the restricted drawing behaviour of 

materials during forming, materials would experience higher surface strains and much 

less wrinkling at the cost of surface fracture at smaller forming depths. 

 

One of the main drivers of conducting stretch forming experiments is to establish the 

forming limits of the materials at different deformation modes. To achieve this, a 

number of designs on experimental geometries have been proposed for stretch forming 

tests. Nakazima et al. [74] proposed a rectangular specimen with varying middle section 

widths. When the width of rectangular a specimen was increased, the sample 
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experienced increased lateral restriction during forming, which prevents the sample 

from being drawn into the die cavity. This would also result in a forming mode closer to 

biaxial stretch. It is argued that failure would initiate at regions other than pole when 

applying rectangular specimens, and hence incapable of obtaining the forming limit of 

the desired forming mode. To ensure that failure initiates at the centre of a composite 

specimen (the point of interest for the purpose of FLD), Raghavan [75] proposed a new 

design of sample geometry where a radius was cut from each edge of a rectangular 

sample. However, this design was, sometimes difficult, to obtain a deformation mode of 

pure shear. Zanjani et al. [73] found that in stretch forming tests, the deformation mode 

of pure shear can be obtained at the pole of small rectangular specimens, with the fibres 

oriented 45°/-45° to the stretching axis. This allowed one to construct the complete FLC 

from stretch forming tests. 

 

Sexton et al. [68] investigated room temperature formability of a fibre metal laminate 

system comprised of aluminium and a self-reinforcing polypropylene composite. A real-

time three-dimensional photogrammetric measuring system was used to acquire surface 

strain evolution during forming. This work studied the meridian strain distribution of 

the FML, and the comparison of it to that of aluminium suggested that FML structure 

can indeed have superior formability than monolithic metallic alloys. Zanjani and 

Kalyanasundaram [47] compared the forming behaviour of glass-fibre reinforced 

polypropylene composites (GRPP) and self-reinforced polypropylene composites 

(SRPP). In the stretch forming tests conducted in this work, the specimens were cut into 

a circular shape with varying widths to determine the effect of aspect ratio. The induced 

strain deformation was measured from a pair of high speed, high resolution CCD 

cameras by using a Digit Image Correlation (DIC) technique. Three points at the pole, at 

some distance from the pole in the longitudinal direction, and at some distance from the 



§2.4 Failure behaviour and failure criteria for composite materials 

21 
 

pole in the 45° to the fibre direction were selected to analyse the strain evolution of two 

composites. It was concluded that GRPP composites exhibit significantly higher 

formability under shear deformation than SRPP composites. In addition, the 

combination of sample’s width and boundary conditions applied is a determinant factor 

on the formability of woven composites.  

 

2.4 Failure behaviour and failure criteria for composite materials 

2.4.1 Failure behaviour 

The failure behaviour of fibre reinforced composites is strongly dependent on the 

material structural organization. The damage initiation and development in the material 

is controlled by the properties of matrix, fibre-matrix interface and material structural 

organization [76].  

 

Gorbatikh and Lomov [76] described the typical sequence of damage in the situation 

where a composite was loaded in the longitudinal direction with an increased tensile 

load. The first damage typically appears in the form of transverse cracks which usually 

initiate inside the yarns with the highest local fibre volume fraction or at yarn 

boundaries, depending on the textile architectures. Transverse cracks would propagate 

along the yarn direction, and the number of cracks is increased until saturation is 

reached when loading is further increased. Once transverse cracks are well developed, 

they further propagate as local delaminations. The onset and propagation of 

delamination depend on the interlaminar fracture toughness of the composite. When the 

transverse strength of longitudinal yarns is exceeded by the local stresses, splitting 

would initiate. Finally, massive breakage of fibres in the longitudinal yarns begins. It is 

noted that the strain at which it happens is usually below the ultimate strain of fibres 

due to inefficient stress transfer caused by fibre crimp and developed delaminations.  
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Matrix cracks is also a typical mechanism observed in textile composites, and the onset 

of which usually starts as micro-debonding at fibre-matrix interface [76]. De Greef et al. 

[77] observed quasi-elliptical shape yarn cross-sections in a carbon-epoxy twill 

composite. Fibre interface debonds appeared firstly on yarn boundaries, and later inside 

yarns which then grew into transverse cracks. A similar situation was also found in a 

carbon-epoxy 3D woven orthogonal non-crimp composite by Bogdanovich et al. [78]. 

However, in natural fibre reinforced composites which have a low transverse stiffness, 

the initiation of matrix cracks can be delayed until later stages of loading [76]. Kersani 

et al. [79] found that the onset of matrix cracks starts just before the entire woven flax-

epoxy composite fails or never appear at all.  

 

Traditionally composite materials were manufactured using thermoset matrices, and an 

extensive number of studies have been carried out to investigate the failure behaviour of 

this class of material systems. The research conducted by Roundi et al. [80] examined 

the fatigue behaviour of glass/epoxy composite materials subjected to cyclic tensile tests 

under different stress ratios and the stacking sequence ([02/902]s; [902/02]s; [03/90]s; 

[903/0]s). All experiments were performed at room temperature through a tensile 

machine equipped with 100 kN loading cell, according to the standard test method 

ASTM D3039/D3039 M. The displacement rate was 1 mm/min with a frequency of 10 

Hz. Specimens were tested under various maximum stress levels, and the applied stress 

ratio (the ratio between the minimum and maximum applied stress) varied between 0.1 

and 0.5. Experimental results showed that it is more adequate to use the [03/90]s fibre 

orientations to achieve the maximum fatigue life. The fatigue strength of the composite 

was found to increase with stress ratio values for all fibre orientations. Fatigue life, 

however, decreases significantly with decreasing stress ratios.  
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Ma et al. [81] studied on-axis tensile tests of unidirectional carbon fibre reinforced 

epoxy laminates. Two typical fracture modes of splitting and the step-like mode were 

observed in the composite, while all 0° laminates showed the step-like fracture mode in 

tensile tests. To further investigated the fracture process of the laminate, step-by-step 

tensile tests were carried out, which stopped at strains of 0.2%, 0.8% and 1.3%. Based 

on observation of fracture surface vertical to the fibre direction under SEM, no 

delamination occurred and only few large-scale cracks could be observed, suggesting 

the dominating failure mode of cohesive failure. It was also found in the work that most 

of the cracks propagated along the thickness direction in the unidirectional carbon fibre 

reinforced epoxy composite. Similar findings were obtained by Mayen et al. [82] where 

the fracture mechanisms of a carbon fibre/epoxy laminate [+75/0/-75]s under uniaxial 

loading tests. In this work, transversal crack propagation was found as the dominating 

failure mechanism as fibres kept a significant amount of epoxy resin on the surface.  

 

Unlike most studies that focused on the overall performance of thermoset composite, 

Wang et al. [83] examined the effect of different surface treatment of reinforcing fibres 

on fibre-matrix adhesion of a carbon/epoxy composite. The Polyacrylonitrile based 

AKSAca A-42 carbon fibres with a bulk density of 1.78g/cm3 were treated with a 

mixture of H2SO4 and HNO (3:1 in volume) for a treatment time of varying from 15 

mins to 60 mins with an increment of 15 mins. Adhesion strength at the interface 

between carbon fibres and epoxy resins was measured in a microbond test. Failure 

samples from the microbond test were then examined with field emission SEM to verify 

the location and mode of the failure. There was a clear evidence that interfacial 

separation, caused by poor adhesion, was the main failure mode of the composite. It was 

also found that both interfacial shear strength and fracture toughness of the interface 

were improved after an optimum 15-30 mins of surface treatment, and these properties 
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started to decline when treatment duration was prolonged beyond 30 mins. 

 

Thermoplastic composites have higher fracture toughness and higher strain to failure 

compared to thermoset composites, leading to different failure behaviour seen from 

experiments. Venkatesan [18] studied the forming behaviour of two different 

composites through draw forming tests. The first one was a glass fibre reinforced 

polypropylene composite (Twintex), and the second was a self-reinforced 

polypropylene composite (Curv). Both were pre-consolidated before forming. Circular 

blanks with a diameter of 180 mm were formed into a hemispherical dome structure. 

Three different experimental parameters, including blank-holder force ranging from 2 

kN to 14 kN, feed rate ranging from 20 mm/s to 60 mm/s were selected in this study. By 

examining the formed parts, no matrix cracking, delamination, fibre breakage, or fibre 

pull-out was observed. However, wrinkling at the flange region was observed frequently 

on both composites that were formed at low blank-holder forces. Increasing the blank-

holder force can effectively reduce the amount of wrinkling, thereby improving the 

quality of the formed structure. The similar observation was also obtained in other 

researches [84]. All-PP composites were stretched to failure in tensile tests, and 

examination on the fracture section revealed that the failure is characterised by fibre 

breakage leading to matrix damage. Although considerable thinning is noticed, no 

failure is initiated in the matrix. Similar finding was also obtained by Romhany et al. 

[85]. Twintex exhibited a different forming behaviour compared to Curv due to 

significantly higher stiffness of the glass fibres compared to the polypropylene fibres. A 

detailed examination on the failure behaviour of Twintex was outside the scope of this 

study, however fibre breakages are seen when samples were stretched to failure in 

tensile tests. 
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Davey et al. [86] performed stamp forming tests on a carbon fibre reinforced PEEK 

composite. Circular discs of samples were formed into a dome structure through a 300 

kN double-action mechanical press machine, and the test was not ceased until the 

initiation of failure in the specimen. It was found that the failure was observed in the 

carbon fibres, primarily due to the significantly lower failure strain of carbon fibres 

compared to that of the polypropylene matrix. Asumani et al. [87] studied the failure 

behaviour of kenaf fibre reinforced polypropylene composites with kenaf fibres 

prepared with alkaline treatment, or a combination of alkaline treatment and three-

aminopropyltriethoxysilane treatment. SEM examination on the failure surface of the 

composite (with a fibre content of 30% and treated with 6% NaOH before silane) 

indicates that the fracture is characterized by fibre breakage.  

 

2.4.2 Failure criteria 

An extensive number of research have been carried out to determine the conditions 

beyond which failure initiates in composite materials. A number of failure criteria have 

been established upon mathematical models built by authors with strong understandings 

on the failure behaviour of composites. These failure criteria, including non-interactive 

and interpolation criteria, have been applied to fibre reinforced composites for 

predicting on their failure behaviour. Among all, the Maximum Strain and the 

Maximum Stress are two of the simplest. 

 

The Maximum Stress failure criteria can be expressed as [88]: 

𝑿𝑪 < 𝝈𝟏𝟏 < 𝑿𝑻,   𝒀𝑪 < 𝝈𝟐𝟐 < 𝒀𝑻,   𝒁𝑪 < 𝝈𝟑𝟑 < 𝒁𝑻,   

 |𝛕𝟐𝟑| < 𝐐,   |𝛕𝟏𝟑| < 𝐑,   |𝛕𝟏𝟐| < 𝐒                                         (2.1) 

where XT, YT, and ZT are the tensile material normal strengths; XC, YC, and ZC are the 

compressive material normal strengths (and have negative values); and Q, R and S are 
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the material shear strengths. The composite material is considered failed when one of 

the criteria above is met.  

 

The Maximum Strain failure criteria can be expressed as [88]: 

𝑿𝜺𝑪 < 𝜺𝟏𝟏 < 𝑿𝜺𝑻,   𝒀𝜺𝑪 < 𝜺𝟐𝟐 < 𝒀𝜺𝑻,   𝒁𝜺𝑪 < 𝜺𝟑𝟑 < 𝒁𝜺𝑻,   

 |𝝉𝟐𝟑| < 𝑸𝜺,   |𝝉𝟏𝟑| < 𝑹𝜺,   |𝝉𝟏𝟐| < 𝑺𝜺                                      (2.2) 

where XԑT, YԑT, and ZԑT are the tensile material normal failure strains; XԑC, YԑC, and ZԑC 

are the compressive material normal failure strains (and have negative values); and Qԑ, 

Rԑ and Sԑ are the material shear failure strains. The composite material is considered to 

have failed when one of the criteria above is met.  

 

The Tsai-Hill failure criterion considers interactions between the failure modes which 

are ignored in both the Maximum Stress theory and the Maximum Strain theory. The 

full multi-axial Tsai-Hill failure surface can be written as [88]: 

(
𝛔𝟏𝟏
𝐗
)
𝟐

+ (
𝛔𝟐𝟐
𝐘
)
𝟐

+ (
𝛔𝟑𝟑
𝐙
)
𝟐

+ (
𝛕𝟐𝟑
𝐐
)
𝟐

+ (
𝛕𝟏𝟑
𝐑
)
𝟐

+ (
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𝐒
)
𝟐
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𝟏

𝐗𝟐
+
𝟏

𝐘𝟐
−
𝟏

𝐙𝟐
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𝟏

𝐗𝟐
−
𝟏

𝐘𝟐
+
𝟏

𝐙𝟐
) 

−𝛔𝟐𝟐×𝛔𝟑𝟑×(
𝟏

𝐗𝟐
+

𝟏

𝐘𝟐
+

𝟏

𝐙𝟐
) = 𝟏                                         (2.3) 

where in order to incorporate different tensile and compressive strengths: 

𝐗 = {
𝐗𝐓   𝛔𝟏𝟏 ≥ 𝟎 
𝐗𝐂    𝛔𝟏𝟏 ≤ 𝟎

,    𝐘 = {
𝐘𝐓   𝛔𝟐𝟐 ≥ 𝟎 
𝐘𝐂    𝛔𝟐𝟐 ≤ 𝟎

,    𝐙 = {
𝐙𝐓   𝛔𝟑𝟑 ≥ 𝟎 
𝐙𝐂    𝛔𝟑𝟑 ≤ 𝟎

             (2.4) 

 

Based on the Maximum Strain failure criteria, Hart-Smith [89, 90] applied 

modifications using a micromechanical approach and suggested a truncated failure 

envelope in biaxial tension as well as biaxial compression, as shown in Figure 2.4. The 

truncated Maximum Strain failure model predicts a more conservative failure envelope 

in in-plane shear where the reduction in strength is approximately 60%. The interactions 
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between the fibres in the warp and weft direction are important for pre-consolidated 

woven composites, resulting in inaccuracies if non-interactive failure criteria are applied 

to this class of material system.  

 

Figure 2.4: Failure envelope for 90° unidirectional laminae [90]. 

 

Tsai and Wu [91] developed tensor polynomial failure criteria, but the proposed 

mathematical function cannot distinguish between fibre fracture, matrix cracks or 

interface breakage [92]. Rotem [93] proposed a stress-based failure criterion which 

separates fibre failure and matrix failure of fibre-composite materials. The first version 

of this failure criterion was proposed in 1973 [94], and then modified in 1975 [95] and 

again in 1981 [96]. There are three assumption of the criterion: Firstly, the failure of 

fibre-composite material laminate will occur only in fibre or matrix. Secondly, the 

laminate is formed under the conditions that only in-plane stresses are effective, and no 

interlaminar stresses which may result in failure. The last assumption is that matrix 

material is softer and weaker than the fibres. Based on these assumptions, the criterion 

predicts fibre failure and matrix failure, separately. 
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Fibre failure criterion: 

𝝈𝑨  ≥  𝑺𝑨+                                                             (2.5) 

𝝈𝑨  ≥  𝑺𝑨 −                                                            (2.6) 

Where S is the composite lamina strength, the index A denotes the axial direction, + 

indicates tensile strength and − indicates compressive strength. 

 

Matrix failure criterion: 

(
𝑬𝒎(𝜺𝑨)𝜺𝑨

± 𝑺𝒎
)𝟐 + (

𝝈𝑻

± 𝑺𝑻
)𝟐 + (

𝝈𝑨𝑻

 𝑺𝑨𝑻
)𝟐  ≥ 𝟏                             (2.7) 

Where the subscript m index stands for the matrix material, T is for transverse 

directions (to the fibres), and AT is for shear in a plane axis that is transverse to the 

fibre direction. The first term expresses the relative shear strength, and the second term 

is the relative normal stress in the transverse direction. The third term is for the axial 

stress in the matrix, which is smaller than the other and usually neglected.  

 

The predictions of this failure criterion were then compared with some experimental 

results of laminate materials [97]. A large discrepancy was noted in some cases due to 

the huge scatter in the experimental results, the arbitrary selection of some tests, and 

material properties. In some experimental cases, the failure of materials is due to a 

failure mode of buckling and hence not covered by this criterion. 

 

A similar stress-based failure criterion, namely Grant-Sanders method, was developed at 

British Aerospace Defence [98], and this failure criterion could predict failure mode as 

well as failure location. Unlike Rotem’s failure criterion which distinguishes between 

fibre failure and matrix failure, this failure criterion is separated as initial failure and 

final failure. The final failure means that the laminate is either incapable of taking 

further load or fibre breakages occurred. The initial failure is a non-catastrophic event 
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following which the failed piles gradually shed load, and it is induced in transverse 

tension and compression. In some cases, final failure is predicted prior to initial failure 

and when this happens, the initial and final failure envelope coincide. 

Initial failure: 

Transverse tension/compression: 

𝝈𝟐 ≥ 𝑭𝟐𝒕                                                                 (2.8) 

𝝈𝟐 ≤ 𝑭𝟐𝒄                                                                 (2.9) 

Where 𝜎2  is transverse shear, F2t is allowable transverse tensile stress, and F2c is 

allowable transverse compressive stress.  

 

Combined shear and transverse tension: 

(
𝝈𝟐

𝑭𝟐𝒕
)𝟐 + (

𝝉𝟏𝟐

𝑭𝟏𝟐
)𝟐  ≥ 𝟏                                                 (2.10) 

Where 𝜏12 is shear stress, and F12 is allowable shear stress.  

 

Final failure: 

Longitudinal tension/compression 

𝝈𝟏  ≥  𝑭𝟏𝒕                                                           (2.11) 

𝝈𝟏  ≤  𝑭𝟏𝒄                                                          (2.12) 

Where 𝜎1 is longitudinal stress (along the fibre direction) 

 

In-plane shear: 

|𝝉𝟏𝟐|  ≥  𝑭𝟏𝟐                                                       (2.13) 

 

Combined longitudinal compression and shear: 

𝝈𝟏

𝑯𝟏𝒄
+
|𝝉𝟏𝟐|

𝑯𝟏𝟐
 ≥ 𝟏                                                 (2.14) 
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Where 𝐻1𝑐  and 𝐻12  are parameters for shear-compression, and these two parameters 

may be the same as F1c and F12 respectively, but are not necessarily so, depending on 

what is known about the material performance.  

 

Delamination: 

𝝉𝟏𝟐 × 𝒕𝒆  ≥  𝒘𝒄𝒓                                                 (2.15) 

Where 𝑡𝑒 is effective ply thickness, and 𝑤𝑐𝑟 is delamination criterion 

 

Instead of defining the failure criterion in the space of stress or strain, energy based 

failure models have also been developed. It is argued that the stress or strain based 

theories are quite reasonable for materials showing a linear stress/strain behaviour, 

whereas energy based criteria would be more approachable for materials exhibiting a 

non-linear behaviour [99]. The first model was developed by Sandhu [100], which was 

built from independent strain energy parameters in the longitudinal, transverse and shear 

directions. A restatement of this model was presented in the work conducted by Wolfe 

and Butalia [99], where the theory has been extended to include a variety of ply-

unloading mechanism as well as to apply stress or strain loading of composite laminates.  

 

It is important to note that most theoretical failure models are derived from 

unidirectional lamina or laminates made from unidirectional lamina layers. These 

failure criteria do not account for weave structures, whereas the behaviour of woven 

composites is highly affected by interactions between their different constituents. In 

addition, most failure criteria stated in the review were built based on fibre reinforced 

thermoset composites, and thermoplastic composites are much more ductile than 

thermoset [101]. This difference in failure behaviour would also influence the 

applicability of failure criteria, such that in the literature fibre breakage is prevalently 
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seen as the dominating failure mechanism for thermoplastic composites whereas there 

are many cases where the failure of thermoset composites is initiated with fibre/matrix 

interface. Lastly, theoretical failure models are developed for homogenized composites, 

whereas natural fibre reinforced composites usually exhibit a high level of porosity 

[102]. The geometric unevenness and material non-uniformity caused by this may also 

affect the application of these theoretical failure criteria.  

 

Failure criteria of composites have also been constructed through experimental 

observations. A forming limit diagram (FLD), which consists of major strains and 

minor strains, can be established in stretch forming tests based on surface principal 

strains as expressed in Equation 2.16. The FLD can provide information on deformation 

modes, identified by the strain ratios of surface points, as computed by the Equation 

2.17.  

𝛆𝟏,𝟐 =
𝛆𝐱+𝛆𝐲

𝟐
±√(

𝛆𝐱−𝛆𝐲

𝟐
)𝟐 + (

𝛄𝐱𝐲

𝟐
)𝟐                                   (2.16) 

𝛃 =
𝛆𝟐

𝛆𝟏
                                                              (2.17) 

where 𝜀1 and 𝜀2 are principal major and minor strains, 𝛽 is strain ratio.  

Deformation mode Strain ratio 

Balanced-biaxial stretch 1 

Plane strain 0 

Uniaxial tension -0.5 

Pure shear -1 

Table 2.2: Summary of deformation modes and corresponding strain ratio for sheet 

metals 

The importance of FLD is that it allows one to construct the forming limits for different 

deformation modes. The line that connects limiting strains at each deformation is named 

a Forming Limit Curve (FLC). Based on the FLC, the forming window of materials can 

therefore be obtained, and used to predict failure for production parts. FLC was 

designed for metal forming, and a number of studies have shown that FLCs can 
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successfully predict the failure associated with monolithic metal alloys [103, 104]. The 

potential of using FLC to predict failure in other classes of material systems has been 

investigated. Inspired from metal forming procedures, Zanjani et al. [73] proposed a 

FLC for a pre-consolidated woven self-reinforced polypropylene composite through 

experimental outcomes in stretch forming tests. A rectangular sample geometry with the 

width varying from 12.5 to 200 mm was used, and specimens were cut in such a way 

that the fibres were oriented at 0°/90° as well as at 45°/-45° to the stretching axis. A 

real-time strain measurement system, named the ARAMIS system™, was used in his 

study to monitor surface motion and to compute strain deformation. This provided 

principal strains of every surface point, which were then used to construct the FLD of 

this class of material system. Figure 2.5 shows the FLC based on limiting principal 

strains observed in experiments. The constructed FLC was path-dependent such that the 

failure occurs at a point when its deformation path and instantaneous strain state 

satisfies the failure criterion, meaning the path of strain evolution is as important as 

principal strains at a single stage. 

 

 

Figure 2.5: The path-dependent FLC constructed by Zanjani et al. [73]. 
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Sexton [19] investigated a fibre metal laminate based self-reinforcing polypropylene 

composite in stretch forming tests. Samples had a self-reinforced polypropylene 

composite core sandwich structure between two pieces of 5005 H34 aluminum layers. 

Hourglass samples with widths from 25 to 200 mm were formed into hemispherical 

domes using a stamping press machine. Prior or to forming, a tightening torque was 

applied to each of six M12 bolts to fix the specimen between the blank-holder and the 

lock-ring, preventing the edge of the composite from being drawn into the die cavity. It 

was found that the failure behaviour of the fibre-metal laminate structure was more 

complex than just considering principal strains, as the failed data point of one specimen 

could lie in the unfailed region of another specimen. High shear strain deformation was 

the reason that an unfailed point can withstand a higher major strain than a failed point. 

Under shear deformation, fibres did not experience the highest strain, and the 

polypropylene matrix could withstand higher strain deformation than the fibres. To 

overcome this, a three-dimensional FLD was proposed, as shown in Figure 2.6. This 

three-dimensional FLD considers principal angle as a key parameter in addition to 

principal strains. 
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Figure 2.6: The three-dimensional FLD proposed by Sexton [19]. 

 

Studies have shown that there are certain disadvantages of expressing forming limits of 

materials in terms of strains [105, 106], and a major one of them is strain path 

dependency. In order to overcome this shortcoming, forming limit curves have been 

developed in the stress space [107-109]. This idea was firstly proposed by Arrieux et al. 

[110] in 1982, and this method seemed to be independent of the strain path changes. 

This method was then promoted as a proper solution when analysing the formability of 

material in multi-stage forming processes. Levy and Van Tyne [107] developed a 

method to calculate a stress-based forming limit curve. Under the application of the 

Keeler-Brazier equation, the effective stress in plane strain was proved to be a function 

of thickness of the sheet and the instability/damage parameter which was calculated 

from a uniaxial tensile test. The stress-based FLC was proved to be applicable to 

conventional high strength steels, and the use of this method could provide a practical 

approach to predict failure behaviour in sheet metal forming with complex strain paths. 

Panich et al. [108] conducted experimental and numerical analysis of Forming Limit 

Stress Diagram for two advanced high strength steel sheets (DP780 and TRIP780). The 
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stress-based forming limit curve was experimentally determined by means of the 

Nakazima forming tests which were performed based on the international standard ISO 

120004-2 on a 600 kN Erichsen sheet metal testing machine. Analytical calculations of 

FLSD were carried out based on a combination of Marciniak-Kuczinsky (M-K) model, 

the Swift hardening law, and the Yid20000-2d yield criterion. There was a slight 

underestimation of the experimental FLD under uniaxial tension load. From the hole 

expansion test conducted in the work, it was verified that the conventional strain-based 

FLD was insufficient for predicting material failure, whereas the stress-based FLD 

could more precisely describe the forming limits of both high strength steels. However, 

it was also found that the accuracy of the stress-based FLD depended strongly on the 

yield function and hardening law used in the calculations. Although stress-based 

forming limit curve seemed to be valid for predicting the failure behaviour of the metals, 

the application of this method to composite forming is still questionable. Apart from the 

dependency on the selection of yield functions, as stated above, the application of stress 

measurement in practice could be less convenient and accurate than strain measurement.  

 

Several issues have also been noticed when applying FLC to material systems other 

than metal alloys. Firstly, it has been mentioned that, due to strain path dependency 

effect, surface principal strains at a single stage are not enough to predict failure [19, 

73]. An additional variable other than principal strains, or a new FLC with different 

parameters might be needed, and the accuracy of the FLC with three variables has not 

been verified yet in the literature. Secondly, it still remains questionable whether the 

FLC is more effective than theoretical failure criteria such as the Maximum Strain 

failure criteria. Thirdly, although an extensive amount of research has been conducted in 

constructing FLCs from stretch forming tests, few has applied the FLC to predict failure 
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in other forming practices, for instance draw forming tests. All of these issues need to 

be addressed properly before applying the FLC in the mass production process.  

 

In summary, additional research effort is required to find theoretically valid and 

practical failure criteria for pre-consolidated woven natural fibre composites, and this 

forms an essential part of this research work.  

 

2.5 Finite element analysis  

In engineering design, numerical simulation is an essential tool that can reduce the trial 

and error part of product development [111-114]. In addition, simulating the forming 

behaviour of a material using Finite Element Models can provide information which 

cannot be gained experimentally. For the rapid forming simulations conducted in this 

work, two formulations can be used: implicit and explicit. In implicit procedure, the 

state at t+Δt is determined based on information at time t+Δt, whereas it is based on 

information at time t in explicit procedure [115]. 

 

2.5.1 Implicit method 

Under the consideration of quasi-static problem, The implicit method can be expressed 

in terms of Equations 2.18 – 2.24 [116]. Firstly, the discretised equilibrium Equation for 

the finite element model is: 

𝐏𝐍 − 𝐈𝐍 = 𝐌𝐍𝐌𝛍̈𝐌                                                   (2.18) 

where 𝑃𝑁 is the external force vector; 𝐼𝑁 is the internal force vector; 𝑀𝑁𝑀 is the mass 

matrix; and 𝜇̈𝑀 is the acceleration vector. 

 

The internal forces are given by: 

𝐈𝐍 = ∫𝛃𝐍: 𝛔 𝐝𝐕                                                    (2.19) 
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Where V is the current volume of the model, 𝜎(𝑥) is the stress at a point currently 

located at position x,  𝛽𝑁(𝑥) is the strain rate-displacement rate transformation defined 

from the interpolation assumption in the element. 

 

In static equilibrium, the d’Alembert forces are almost constant with time, implying the 

following expression.    

𝐌𝐌𝐍𝛍̈𝐌 ≈ 𝟎                                                      (2.20) 

 

ABAQUS/Standard uses Newton’s method to solve for static equilibrium. By applying 

the Taylor’s series expansion, an estimated solution at iteration (i) and 𝑢(𝑖)
𝑁  can be 

obtained: 

𝐏𝐍 − 𝐈𝐍 + (
𝛛𝐏𝐍

𝐮𝐌
−
𝛛𝐈𝐍

𝐮𝐌
) 𝐂𝐌 +⋯ = 𝟎                                     (2.21) 

Therefore, 

𝐊𝐍𝐌×𝐂𝐌 = 𝐏𝐍 − 𝐈𝐍                                               (2.22) 

𝐊𝐍𝐌 =
𝛛𝐏𝐍

𝐮𝐌
−
𝛛𝐈𝐍

𝐮𝐌
                                                   (2.23) 

where 𝐾𝑁𝑀 is the system’s tangent stiffness, or Jacobian matrix. 

The incremental displacement can also be updated as: 

∆𝐮(𝐢+𝟏)
𝐍 = ∆𝐮𝐢

𝐍 + 𝐂𝐢
𝐍                                              (2.24) 

where ∆𝑢(𝑖+1)
𝑁  is the incremental displacement at the increment of i+1; ∆𝑢𝑖

𝑁  is the 

incremental displacement at the increment of i; 𝐶𝑁 is the correlation to the solution at 

the degree of freedom N at the increment of i. 

 

2.5.2 Explicit method 

The explicit method was originally developed to solve dynamic problems involving 

deformable bodies [115]. ABAQUS/Explicit method solves for a state of dynamic 

equilibrium at the current time increment (t). 
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𝐏𝐍 − 𝐈𝐍|𝐭 = 𝐌
𝐍𝐌𝛍̈𝐌|𝐭                                            (2.25) 

Therefore: 

𝛍̈𝐌|𝐭 = [𝐌
𝐍𝐌]−𝟏×(𝐏𝐍 − 𝐈𝐍)|𝐭                                     (2.26) 

By applying central difference integration rule, the velocities and displacements can, in 

turn, be updated. 

𝐮̇𝐍|
𝐭+
∆𝐭

𝟐

= 𝐮̇𝐍|
𝐭−
∆𝐭

𝟐

+ (
∆𝐭|𝐭+∆𝐭+∆𝐭|𝐭

𝟐
) 𝛍̈𝐍|𝐭                             (2.27) 

𝐮𝐍|𝐭+∆𝐭 = 𝐮
𝐍|𝐭 + ∆𝐭|𝐭+∆𝐭𝐮̇

𝐍|𝐭+∆𝐭                                 (2.28) 

 

The central integration rule is only conditionally stable, and the solution can diverge 

rapidly if the time increment is too large. An estimate of stable time increment is given 

by: 

∆𝒕 = 𝐦𝐢𝐧 (
𝑳𝒆

𝑪𝒅
)                                               (2.29) 

where 𝐿𝑒is a characteristic element length and 𝐶𝑑 is the dilatational weave speed of the 

material. For linear elastic material: 

𝐂𝐝 = √
𝛌+𝟐𝛍

𝛒
                                                   (2.30) 

Where 𝜆 and 𝜇 are Lame’s constants and 𝜌 is the material density. 

 

In sheet forming which is a quasi-static process, contact conditions are of great 

importance. The implicit procedure has to iterate to satisfy all boundary conditions and 

the time increment needs to be reduced if contact conditions are not satisfied. However, 

in the explicit procedure, no iterations are required to enforce contact conditions, and 

the time increment is irrelevant to the number of contact points as well as the contact 

conditions. In terms of the computational cost, there is a linear relationship between the 

size of the model and the solution for the explicit procedure. For the implicit procedure, 

the solution time is proportional to the square of the wavefront size in the global 

stiffness matrix, which could be very expensive in computational cost when running 
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large size models or 3D simulations [115]. Therefore, the implicit procedure offers a 

lower solution cost at small model size, and less solution cost-effective at large model 

size.  

 

2.5.3 Shell formulation 

Compared to solid elements, shell elements can provide good accuracy with 

considerable savings in computational costs when modelling blanks in rapid forming 

simulations [12]. ABAQUS/Standard offers a shell element called S4 or S4R where R 

stands for reduced integration. The geometric descriptions of shell elements are 

presented in Equations 2.31-2.41 [117]. 

  

The position of a material point in the shell is defined as: 

𝐱(𝐒𝐢) = 𝐱̅(𝐒𝛂) + 𝐟𝟑𝟑̅̅ ̅̅ (𝐒𝛂)𝐭𝟑(𝐒𝛂)𝐒𝟑                                    (2.31) 

Where the subscript i and other Romans in the Equations below range from 1 to 3; 𝛼  

and other lower Greek subscripts in the Equations below represent the quantities in the 

reference surface of the shell range from 1 to 2; 𝑡3 is the normal to the reference surface 

of the shell. 

 

The gradient of the position can therefore be represented as: 

𝛛𝐗

𝛛𝐒𝛃
=

𝛛𝐗̅

𝛛𝐒𝛃
+ 𝐟𝟑𝟑̅̅ ̅̅

𝛛𝐭𝟑

𝛛𝐒𝛃
𝐒𝟑 ,   

𝛛𝐗

𝛛𝐒𝟑
= 𝐟𝟑𝟑̅̅ ̅̅ 𝐭𝟑                                (2.32) 

Where we have neglected derivative of 𝑓33̅̅ ̅̅  with respect to 𝑆𝛽, and the thickness increase 

factor 𝑓33̅̅ ̅̅  is assumed to be independent of S3. 

 

In the deformation state, the local, orthonormal shell directions 𝑡𝑖  can be defined as 

follow: 
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𝐭𝐢×𝐭𝐣 = 𝛅𝐢𝐣,   𝐭𝐢𝐭𝐢 = 𝐈                                                   (2.33) 

Where 𝛿𝑖𝑗 is the Kronecker delta and I is the identity tensor of rank 2.  

 

𝐟𝛂𝛃 = 𝐭𝛂
𝛛𝐗

𝛛𝐒𝛃
= 𝐟𝛂𝛃̅̅ ̅̅ +  𝐁𝛂𝛃𝐒𝟑                                           (2.34) 

The reference surface deformation gradient and the reference normal gradient can 

therefore be expressed as: 

𝐟𝛂𝛃̅̅ ̅̅ =  𝐭𝛂
𝛛𝐗

𝛛𝐒𝛃
 |𝐒𝟑=𝟎 = 𝐭𝛂

𝛛𝐗̅

𝛛𝐒𝛃
                                           (2.35) 

𝐁𝛂𝛃 = 𝐭𝛂
𝛛𝐭𝟑

𝛛𝐒𝛃
                                                      (2.36) 

 

In the original (reference) configuration, the position is denoted by X (the reference 

surface by 𝑋̅) and the direction vectors are denoted by 𝑇𝑖. Therefore Equation 2.31 can 

be transformed to the following equation. 

𝐱(𝐒𝐢) = 𝐱̅(𝐒𝛂) + 𝐓𝟑(𝐒𝛂)𝐒𝟑                                         (2.37) 

 

The gradient of the position, and the in-plane components of the gradient can be written 

as: 

𝛛𝐗

𝛛𝐒𝛃
=

𝛛𝐗̅

𝛛𝐒𝛃
+
𝛛𝐓𝟑

𝛛𝐒𝛃
𝐒𝟑 ,   

𝛛𝐗

𝛛𝐒𝟑
= 𝐓𝟑                                        (2.38) 

𝐟𝛂𝛃
° = 𝐓𝛂

𝛛𝐗

𝛛𝐒𝛃
= 𝛅𝛂𝛃 + 𝐁𝛂𝛃

° 𝐒𝟑                                         (2.39) 

 

It is assumed that the in-plane direction vectors follow from the surface coordinates, and 

the original reference surface normal gradient is therefore determined. 

𝐓𝛃 =
𝛛𝐗

𝛛𝐒𝛃
 |𝐒𝟑=𝟎 =

𝛛𝐗̅

𝛛𝐒𝛃
                                             (2.40) 

𝐁𝛂𝛃
° = 𝐓𝛂

𝛛𝐓𝟑

𝛛𝐒𝛃
                                                   (2.41) 

It is noted that the original reference surface normal gradient from interpolation of the 

nodal normal with the shape functions in the FEA formulation. 
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2.5.4 FEA simulations of composite forming 

Typically, in composite forming there are two modelling methods: micro- and macro-

level methods [18]. A micro-mechanical simulation models the individual fibres and the 

matrix in each layer of the laminate structure, and this method can generate accurate 

results, but at a high computational cost. In macro-mechanical modelling, the composite 

material is considered a homogeneous structure. In either method, the way the material 

is modelled is of great importance to the accuracy of the model. Boisse et al. [118] 

developed a FEA simulation of woven fabrics forming where fibres and matrix were 

modelled individually. The mechanical behaviour of the material in tension was 

determined through bi-axial stretching tests, where different strain ratios ranging from 0 

to 2 were used. It was found that the behaviour of the material was non-linear and the 

non-linearity zone was increased with decreasing the strain ratio value. In addition to 

using the biaxial stretching tests, picture-frame tests were also applied to obtain the in-

plane shear behaviour of the composite. By incorporating these mechanical properties, 

the process of deep drawing of a square box was simulated and then compared in two 

different ways: tension only as well as tension plus shear. The numerical simulations 

suggested that the rotation angles were reduced when shear stiffness was taken into 

account, which was closer to reality. 

 

Vanclooster et al. [119] undertook forming experiments of glass fibre reinforced 

polypropylene fabrics to validate commercial simulations. During experiments, a local 

shear profile of the formed shape was obtained in sequential steps. A reference pattern 

was sprayed to the surface of a pre-consolidated woven fabric, and based on the way the 

pattern varied the shear angle of the deformed sheet could be obtained through a DIC 

(Digital Image Correlation) technique. Similar to Boisse’s work, two approaches were 

compared. The first was the kinematic approach that only considered un-resisted in-
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plane shear as the deformation mechanism, and this failed to predict fibre re-orientation 

during forming. The second approach adopted a more refined mechanical simulation 

where both the shear and tensile behaviour of the fabric were taken into account. A 

‘biphase’ model with a thermo-visco-elastic matrix and elastic fibres was used in this 

simulation. The total stress was given by the sum of three components from: the elastic 

properties based on in-plane shear behaviour of the fabric; the matrix material through a 

Maxwell model; and the behaviour of the reinforcement in the fibre directions. All three 

components were uncoupled. This method gave a reasonably good prediction of fibre 

reorientation, and deviations between experiments and simulations could be explained 

by the ‘over-simplified’ material model and the lack of coupling between the tensile and 

shear behaviour. Based on the findings observed by Boisse et al. [118] and Vanclooster 

et al. [119] both the tensile and shear behaviour of the composite fabric should be taken 

into account to ensure an accurate numerical simulation. Lee et al. [120] analysed the 

biaxial stretch forming behaviour of glass-fibre reinforced thermoplastic composite with 

a random fibre orientation under various forming parameters such as punch speed, 

temperature, and fibre volume fraction. This study found that the difference between 

experimental and numerical simulation was due to the inability of the material model to 

incorporate the effect of strain rate on the mechanical responses of the material.  

 

Built-in material models are usually available in commercial FEA software. However, a 

user-defined material routine has been used to model more complicated material 

behaviour [121]. Sexton [19] modelled a glass-fibre reinforced polypropylene 

composite through a user-defined material routine, and the flow chart of the material 

model is shown in Figure 2.7. Due to the non-linearity nature of material stiffness in 

both the fibre and shear directions, the coefficients in the stiffness matrix were 

expressed as functions of strains.  
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Figure 2.7: Flow chart of the material model [19]. 

 

It was found that the stress-strain behaviour of the composite material fitted the 

following expressions:  

𝛔 = 𝐀𝐞𝐁𝛆 + 𝐂𝐞𝐃𝛆                                                 (2.42) 

𝛔 = 𝐘𝛆 + 𝐇                                                       (2.43) 

where 𝜎 is stress; 𝜀 is strain; and A, B, C, D, Y and H are coefficients. 

 

Equation 2.42 was used when the absolute value of strain was less than 2%, otherwise 

the stress-strain relation was described by Equation 2.43. To help predict the forming 

behaviour at different temperatures, the stress-strain relations at elevated temperatures 

were expressed by these two equations using curve-fitting software so that all 

coefficients could be expressed as a function of temperature.   
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As well as a suitable material model, contact conditions are another essential component 

of FEA models. When a circular sample is formed into a hemispherical dome structure 

with its edge being clamped, the tension in the sheet increases with the punch 

displacement. If there is no friction between the composite and the tool, the greatest 

strain will be at the pole, which is where failure will occur. Under high friction 

conditions, the pole of the specimen stops deforming beyond a certain punch depth, and 

the maximum strain deformation appears some distance from the pole where failure by 

splitting is expected [122]. Because at small forming depths the maximum strain 

deformation spreads from the pole to nearby regions, a less lubricated contact 

conditions result in lower strain profile along the diameter of the specimen [19]. In 

some applications, a very high friction value was defined when the contact layers were 

assumed not able to slide against each other [50].  

 

Previous studies have shown that the steady state friction coefficient between the 

thermoplastic composite and the tools can vary from 0.05 at high temperatures, low 

sliding speeds, and high pressures to 0.5 at low temperatures, high sliding speeds, and 

low pressures [123]. Much higher friction values were not uncommon. Harrison et al. 

[124] examined the effect of the coefficient of friction in press forming of a 0°/90° 

cross-ply thermoplastic composite at elevated temperatures. The first simulation used an 

artificially high value of coefficient of friction, 5.0, to account for the rapid cooling, 

freezing and reduction in mobility of the thermoplastic matrix composite during 

forming. A more realistic value of 0.3 was used in a second simulation. It was found 

that the localised shear zones were suppressed by a high coefficient of friction, and a 

higher material stiffness promoted shear localisation when the amount of friction was 

more realistic.   
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An essential application of numerical simulation is to provide information which cannot 

be observed experimentally. Davey et al. [86] developed FEA models in 

ABAQUS/Standard to simulate the forming behaviour of a pre-consolidated carbon 

fibre reinforced polyether ether ketone (PEEK) composite in draw forming tests. In the 

FEA simulation, a linear orthotropic material model, based on mechanical properties 

obtained from experiments and the literature, was assigned to the composite material. 

For dome forming tests, a real-time strain measurement system was used to monitor 

surface motion. However, the flange region of the composite was blocked by the tool, 

making it impossible to observe the forming behaviour of this region. Flow behaviour 

was observed from the FEA simulations, where much larger displacements were 

experienced in the fibre directions compared to at 45° to them. This was primarily due 

to much higher stiffness to carbon fibres compared to the PEEK matrix. 

 

2.6 Summary 

This Chapter has summarised the literature regarding the structure of natural fibre 

composites, and surveyed possible treatments that can help this class of material system 

achieve better formability. It has also reviewed composite forming and how to simulate 

forming experiments using FEA modelling. While an extensive amount of research has 

been done on the forming of composite materials, there are still two unanswered 

questions in the field, and this work was designed to answer them.  

 

The first question is, how to form this class of material system? Untreated natural fibres 

usually cannot withstand a high level of extension, and poor formability is therefore 

expected when the composite is formed without receiving any additional treatment. In 

addition, preheating, which is the traditional method of improving the forming 

behaviour of composite materials, may not be applicable because of possible thermal 
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degradation of natural fibres at low temperatures. Even if this treatment works, are there 

any other treatments (either physical or chemical) that might be more? The current work 

also investigates the effect of the weave structure by comparing two different natural 

fibre composites which have the same constituent material, similar fibre fraction and 

thickness, but different weave structure. 

 

The second question is that, what is the best measure of predicting the failure of the 

composite? Most failure models stated in the literature review were developed for 

finished composites subjected to uniaxial loading but not for damage during forming. 

More importantly these criteria do not account the weave structures in which 

interactions between the fibres and the matrix are important. Also, according to the 

literature, the conventional FLC may not be applicable to composite materials. 

Additional research effort is therefore needed to obtain valid failure criteria for woven 

composite materials.  
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Chapter 3  

Materials and Methodology 

3.1 Introduction 

Natural fibre composites are processed using different treatments prior to forming, and 

this section gives details of treatments. Tensile tests are performed on Instron™ 4505 

testing machine at a constant loading rate of 5 mm/s. Both dome forming and stretch 

forming tests are conducted through a stamping press machine. An ARAMIS™ strain 

measurement system is used to monitor surface motion, and to calculate strain 

deformation. This Chapter presents the composite materials used in the current work, 

followed by an overview of different treatments applied to natural fibre composites and 

finally the setup of all experiments performed including uniaxial loading, stretch 

forming, and dome forming Tests. 

 

3.2 Materials 

The forming behaviour of two classes of flax fibre reinforced polypropylene (pp) 

composites, as shown in Figure 3.1, were analysed. Firstly, a chopped natural fibre 

composite was used: it was a pre-consolidated chopped flax fibre reinforced 

polypropylene composite, FibriBoard™, was manufactured by EcoTechnilin, UK. The 

second material was a continuous natural fibre composite: it was a continuous flax fibre 

reinforced polypropylene fabric, Biotex™, manufactured by Composites Evolution, UK 

and then consolidated by the Xiafei factory located in Jiayong Junctions, Dongguan, 

Guangdong, China. In the consolidation process, two pieces of 200×200 mm 1 mm 

thick fabrics were stacked on top of each other and placed in a closed steel mold with an 

inner height of 1 mm. The mold together with fabrics were then inserted into a heat 

press machine and heated to 190˚C which exceeded the melting temperature of the 
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polypropylene. A pressure of 10bar was then applied to the mold for 3 minutes to 

ensure the thickness of the consolidated composite was no more than 1 mm. 

Consolidated composites were then cooled to room temperature before removal. The 

chopped natural fibre composite (CNFC) had a random distribution of short flax fibres 

whereas the fibre bundles in the continuous natural fibre composite (NFC) were woven 

in a 2 × 2 twill structure. Both composites have the same constituent material, a similar 

fibre weight fraction (50%) and the same thickness (1 mm). It was noted that both 

composites appeared to possess a higher than expected level of surface porosity, and 

this porosity seemed to continue through the thickness of the sample. It was assumed 

that this porosity was caused by the evolution of gaseous products during the hot 

consolidation process – a common issue with natural fibre composites. 

 

(a)                                                                  (b) 

Figure 3.1: The pre-consolidated composites. (a) NFC; (b) CNFC. 

 

3.3 Treatment methods 

The natural fibre composite materials studied in this study exhibit low extensibility, as 

per observations in uniaxial loading tests described in Chapter 4. The inherently small 

elongation-to-failure of flax fibres largely prevents the natural fibre composites from 

being stretched a great extent. Therefore, additional treatments on consolidated 
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composites become necessary for improving the formability for this class of material 

system. In this work, three different types of treatments were selected and their effects 

on the forming behaviour of natural fibre composites were studied. These treatments 

were: preheating, chemical treatment, and tailored blanks. 

 

3.3.1 Preheating 

Preheating has been conventionally used in improving the formability of materials in 

rapid forming processes. This treatment was applied to the composites in both tensile 

tests and draw forming tests, using a heat chamber and heat press machine as shown in 

Figure 3.2. For the tensile tests performed at high temperatures, samples were preheated 

through a heat chamber before testing. The temperature inside the heat chamber could 

rise nonlinearly up to 340 ˚C at an average rate of 12 ˚C/min (the heating rate was much 

faster at low temperatures). The highest temperature at which the composites were 

tensile tested was 160 ˚C. For dome forming tests, a hydraulic heat press consisting of 

two heating plates and a manual cylinder controller was used to heat the samples. The 

heat press was able to heat samples safely up to 250 ˚C with a maximum pressure of 60 

bar. The heat press was placed near the stamping press to minimise the temperature 

drop during sample transfer. Samples were preheated to 15 ˚C above the forming 

temperature to compensate for the drop in temperature which occurred during transfer 

of the samples from the heat press to the stamping machine and waiting for the punch to 

move down. The required adjustment was verified by temperature observations during 

the experimental process.  
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(a)                                                                     (b) 

Figure 3.2: The equipment used for the preheating treatment. (a) heat press; (b) heat 

chamber. 

 

The thermal degradation of the composite was identified in this study. To determine the 

mechanisms behind degradation, Fourier Transform Infrared Spectroscopy (FTIR), 

Thermogravimetry (TG) mass, and Differential Scanning Calorimetry (DSC) 

examinations were conducted. FTIR and TG have been proved valuable tools to clarify 

different steps during fibre decompositions [11, 125], which is essential to determine 

the causes of the fibre thermal degradation observed in the current study. DSC tests 

have been run frequently to determine the heat flow behaviour of materials over the 

range of working temperatures [11, 12]. It is noted that composite materials were heated 

from room temperature to 200 ˚C in both TG mass and DSC examinations.  
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Figure 3.3: Schematic of the equipment used for preparing FTIR specimens. 1: 

temperature controller; 2: nitrogen-gas bottle; 3: rotameter; 4: thermocouple;  

5: stainless-steel boat; 6: horizontal electric furnace. 

  

To prepare the samples for FTIR examination, the composites were preheated to the 

desired temperatures and then cooled to room temperature surrounded by nitrogen gas, a 

procedure which prevented oxidization and ensured that the chemical composition 

remain unchanged. This process was done using the equipment shown in Figure 3.3.  

The temperature controller was set to 25 ˚C, 120 ˚C and 150 ˚C, respectively, and the 

temperature increased at an average rate of 20 ˚C/min. All samples were cut into a 4 

mm by 10 mm rectangle using a mechanical scissors. The tube was filled with nitrogen 

gas and the samples were placed the stainless-steel boat at the middle of the horizontal 

tube. The nitrogen prevented oxidation of the materials during testing, and it usually 

took 15 to 20 minutes for nitrogen to fully occupy the tube. The temperature controller 

was turned off when the desired temperature was reached, after which the entire system 

cooled naturally to room temperature, and the boat was then taken from the tube. The 

samples that collected from the stainless boat were then subjected to FTIR tests. 
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3.3.2 Chemical treatments 

It is an important part of the scope to investigate whether there are other treatments, in 

additional to the conventional method (preheating), which can effectively improve the 

formability of natural fibre composites, and equally important to determine whether 

these treatments are more effective than preheating. Chemical treatments are being seen 

as effective methods to modify natural fibre based composites to improve their 

formability. Distilled water, a 0.5 M Sodium Hydroxide solution (NaOH), a 12%wt 

M.A. solution and a Cloudy Ammonia (C.A.) solution with 20 g/L of ammonia were 

selected to determine the effect of chemical treatments on the physical and tensile 

properties of the samples. To determine the saturation characteristics in each solution at 

ambient temperature, samples were placed in plastic containers filled with chemical 

solutions up to a depth of 35 mm. A circular hole was drilled in the middle of the lid 

and sealed with a piece of flexible parafilm to create a gas bleeding mechanism and 

ensure safe testing conditions. The variations in sample weights were recorded 

accordingly during solution uptake, and subsequent moisture egress from saturation. A 

precision weighing balance, an A&D GX-400 milligram scale, was used to weigh 

samples. This balance system can measure weights ranging from 0.02 g to 410 g with 

precision of 0.001 g and error of 0.01 g. The balance was calibrated prior to each use, 

and was re-zeroed before measuring the weight of each sample (which was lightly 

mopped to remove surface moisture).  

 

Three sample conditions were trialled: untreated, saturated, and dried. Untreated 

samples were cut from the as-received material with no chemical treatment; saturated 

testing was performed on samples that had reached a consistent weight gain; and dried 

testing was performed on samples that had been saturated, and then subsequently dried. 

Variations in tensile properties were observed between different conditions, and the 
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mechanism behind these changes was investigated using Scanning Electron Microscope 

(SEM) examinations on fractured surfaces. All samples were lightly platinum coated 

before SEM examinations using a Hitachi 4300 Field Emission Electron Microscope. 

Water treatment was applied to composites in all forming practices conducted in this 

study, including dome forming tests and stretch forming tests. During these tests, the 

composites were formed in untreated, water-treated and redried conditions, respectively.  

 

3.3.3 Tailored blanks 

Unlike the preheating and chemical treatments which alter the material properties, the 

application of tailored blanks could help the composites achieve better formability by 

using particular sample geometries. Tailored blanks called for specific sample shapes in 

which areas were cut out along fibre directions from sample edges. In dome forming 

tests, the tailored shape introduces unbalanced restriction on material flow (less 

restriction along fibre directions). Compared to a fully circular sample, blanks tailored 

in this way experienced less restriction in the longitudinal and transverse directions, 

resulting in less strain deformation on the flax fibres. The amount of strain deformation 

acting on the flax fibres is a key factor in composite failure, as the fibres possess a 

significantly lower elongation-to-failure compared to that of the polypropylene matrix. 

Figure 3.4 shows experimental geometries of the tailored blanks. By varying the inner 

radius of the tailored blank, R65, R75, and R85 specimens (the number indicates that 

the inner radius in mm) are used in experiments. 
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Figure 3.4: Experimental geometries of the tailored blanks. 

 

3.4 Experimental setup 

3.4.1 Tensile Tests 

A number of forming tests were performed in this work. Tensile tests were performed 

firstly to determine the mechanical behaviour of composite materials in different 

temperatures or conditions of chemical treatments. The information obtained from 

uniaxial loading tests provides mechanical responses of this class of material systems in 

simple forming conditions, which can be used in analysing the behaviour of samples in 

more complicated experiments such as dome forming and stretch forming tests. Tensile 

tests were conducted to both CNFC and NFC in different conditions/treatments. All 

tests were conducted using an Instron™ 4505 testing frame, as shown in Figure 3.5. 

Specimens were tested at a rate of 5 mm/min, with failure being defined as when the 

applied load had dropped to 60% of its original value. Rectangular test specimens of 15 

mm by 150 mm were produced, and the actual testing area was 15 mm by 100 mm. In 

order to obtain tensile properties along the fibre direction and off-fibre direction, NFC 

Radius 

R=90 mm L=50 mm 
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samples were cut such that fibres were oriented at 0˚/90˚ as well as at 45˚/-45˚ to the 

sample axis. During experiments, surface displacements are captured by the 

ARAMIS™ system which then computes surface strains.  

 

Figure 3.5: The Instron™ 4505 testing frame used in the tensile tests. 

 

3.4.2 Stretch forming 

Stretch forming experiments had been developed to investigate the failure of monolithic 

metal alloys, and this technique had also been successfully applied to woven composites. 

The current work uses stretch forming technique to determine the failure behaviour of 

natural fibre composites in different deforming modes. A custom-designed press was 

used to conduct stretch forming tests. This press machine consists of a 30-ton H-frame, 

a 100 mm diameter hemispherical punch, and an open die of 105 mm diameter. The 

stamp press was controlled through a hydraulic feed controller. A 150 kN compression 

load cell and a 250 mm linear potentiometer were installed to record punch force and 

measure displacement, respectively. Process parameters like blank-holder force (BHF), 

feed rate and holding time could be set up through a computer connected to the stamp 

press. The blank-holder force could be set to any value between 0 to 14 kN. The fastest 

and slowest feed rate were 40 mm/s, and 10 mm/s, respectively. The open die design of 



Materials and Methodology 

56 
 

the stamping press facilitated the application of optical strain measurements, which 

were made using the ARAMIS™ system. This system applies three-dimensional 

photogrammetry technologies to record, and to compute surface displacement and strain 

deformation based on photographic images captured by its two charge-coupled device 

(CCD) cameras. Displacement was then computed from these images using an area-

based matching algorithm where two-dimensional displacements can be correlated to 

three-dimensional point distribution at each stage (and hence to compute strains). The 

ARAMIS system was placed beneath the stamping press to monitor the surface motion 

of the composite during dome forming and stretch forming, as shown in Figure 3.6. The 

specifications of the ARAMIS™ system is summarised in Table 3.1.  

 

 

Figure 3.6: Integration of the ARAMIS™ system with the stamping press. 

 

Parameter Specifications 

Measuring volume (mm) 10 × 8 to 5000 × 4150 

Camera resolution (pixels) 2448 × 2050 

Maximum frame rate (Hz) 15 

Shutter time (s) 0.0001 to 2 

Strain accuracy (%) Less than 0.02 

Strain range (%) 0.02 to >100 

Table 3.1: Specifications of the ARAMIS™ system 



§3.4 Experimental setup 

57 
 

For instance, there are usually around 30 images taken for the entire stretch forming test 

(including images for pre-stretch), and in each image there is a full-field strain contour 

consist of more than 3000 pixel/data point. For these data points, a list of metrics 

including major strains and minor strains are available for usage. To obtain ideal 

conditions for ARAMIS™ strain measurements, sample surfaces were painted with 

black stochastic dots on top of a white background. After painting, samples had a high 

level of colour contrast, were sufficient light, but not too reflective. It needs to be 

emphasised that the composites in this study possessed a high level of surface porosity, 

a property seemed to extent through the sample thickness. As a result, paint usually 

soaked right through the samples, making this class of material system very difficult to 

paint. In practice, experience suggested that an extremely light white spray helped the 

ARAMIS™ system recognise sample surfaces. For those experiments conducted after 

water treatment, saturated composites were painted quickly and then tested at maximum 

moisture level. Inevitably, paint at flange areas that were squeezed by the tools (the 

blank-holder and the die) would peel off as a result of surface moisture.   

 

Stretch forming was an important tool in determining the failure limits of natural fibre 

composites at different forming modes. Figure 3.7 shows that each of hourglass 

geometry can represent a typical forming mode. By increasing the width of an hourglass 

specimen, a composite experienced increased lateral restriction during forming. This 

prevented the sample from drawing into the die cavity and resulted in a forming mode 

closer to biaxial stretch (a strain ratio close to 1), as shown in Figure 3.7.  

 



Materials and Methodology 

58 
 

      

 

                                  (a)                                                                (b) 

Figure 3.7: Hourglass geometries (a); and the effect of sample width on the forming 

mode of the sample (b). 

 

 

Figure 3.8 Schematic of the lock-ring used in stretch forming tests. 

 

In material forming, the forming mode experienced by samples can be determined from 

the strain ratio between minor strain and major strain as illustrated in Equation 2.2. 

Seven experimental geometries, including one full circle specimen, three 0°/90° (fibre 

direction) specimens with varying widths, and three 45°/-45° (off-fibre direction) 

equivalent specimens, were used to obtain the failure limits of the composite in all 
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forming modes, ranging from biaxial stretch to pure shear. Table 3.3 summarises all 

forming parameters and their levels applied in stretch forming tests for NFC materials. 

For instance, WF25 stands for the 25 mm water-treated specimen with the flax fibres 

oriented 0°/90° to the stretching axis (along fibre directions). It is noted that the 

parameter of fibre orientation is not applicable to CNFC material system as chopped 

flax fibres are randomly distributed. The polypropylene matrix has a much larger 

elongation-to-failure compared to the flax fibres, and therefore it is anticipated that the 

composite can form to a greater depth when the flax fibres are oriented 45°/-45° (in off-

fibre direction) than in the 0°/90° to the longitudinal direction. More importantly, 45°/-

45° specimens with small sample width can exhibit a major forming mode of pure shear 

which cannot be obtained from 0°/90° specimens. Figure 3.8 shows the design of the 

lock-ring used in stretch forming tests. A 15 kN.m tightening torque was applied to six 

M12 bolts to fix the specimen between the blank-holder and the lock-ring prior to 

forming, which prevented the edge of the composite from drawing into the die cavity. A 

forming rate of 20 mm/s was chosen for all specimens. No premature failure or edge 

movement was identified during forming, which enabled the specimen to exhibit the 

desired forming mode influenced only by specimen’s width and the fibre orientation. 

Since stretch forming tests are conducted using the stamping press, the ARAMIS™ 

system was also placed beneath the machine.  

 

Parameters Variables/levels 

Treatment Untreated (U), Water-treated (W), Redried (R) 

Fibre orientation Fibre direction (F), Off-fibre direction (O) 

Sample width (mm) 25, 70, 100, 200 

Table 3.2: Parameters and corresponding levels used in stretch forming experiment 
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3.4.3 Dome forming tests 

Samples would experience a combination of drawing and stretching in all directions 

during dome forming test. Due to the difference in stiffness between the flax fibres and 

the polypropylene matrix, during forming the woven composite tends to be drawn into 

the die cavity along fibre directions. In general, low blank-holder forces were usually 

not large enough to fully restrict material flow, and the specimen tends to be stretched 

rather than drawn when material flow is restricted at high BHFs. Similar to stretch 

forming tests, all dome forming tests were performed through the custom-designed 

press, beneath which the ARAMIS™ system was placed to provide displacement and 

strain deformation during forming. In dome forming tests, a single circular geometry 

with a diameter of 180 mm was used, and all samples were formed at a constant punch 

rate of 20 mm/s. It is an important part of the thesis to compare the forming behaviour 

of natural fibre composites under different treatments. The treatments given to the 

composites and their parameters were summarised in Table 3.3. 

 

Treatments Variables/levels 

Preheating (°C) 23, 60, 100, 110, 120, 130, 140, 150, 160 

Water treatment Water-treated (W), Untreated (U), Redried (R) 

Tailored blanks (mm) 90, 85, 75, 65 

Table 3.3: The treatments and their levels applied in dome forming tests 

 

3.5 Summary 

Two natural fibre composites with the same constituent material, similar fibre weight 

fraction (50%), same cross-sectional thickness (1 mm) but different weave structures 

were studied. This section has described the details of the various forming practices 

studied, including tensile, dome forming, and stretch forming. Via stretch forming tests, 

in which samples varying widths (or fibre orientation for NFCs) were formed, the 

failure envelope of each composite could be obtained. In dome forming tests, the major 
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forming mechanisms were more complicated, since the sample edge was not fixed and 

the composite could be drawn into the die cavity. The effect of different treatments was 

also able to be investigated by analysing the behaviour of composites under different 

conditions. The ARAMIS™ system was used for all tests to provide data on strain 

deformation of sample surfaces, which is of great importance for constructing failure 

envelopes as well as determining the forming behaviour of each sort of composite.  
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Chapter 4  

Characterisation of Mechanical Properties 

4.1 Introduction 

In tensile tests samples are stretched at a constant rate of 5 mm/s until failure for both 

NFC and CNFC. As mentioned previously, NFC stands for natural fibre composite and 

refers to the continuous flax/pp composites manufactured by Composites Evolution in 

UK. CNFC (Chopped natural fibre composites) refers to the chopped flax/pp composite 

manufactured by EcoTechnilin, UK. Both material systems are stretched at different 

temperatures ranging from room temperature to 160 ˚C, or in different conditions of 

chemical treatment including water, NaOH, C.A and M.A. The understanding on 

mechanical properties can aid analysis under the complicated forming situations 

presented in Chapters 5 and 6. The variations in mechanical responses of this class of 

material system could help compare the effectiveness of different treatments, and a 

particular focus is paid to changes in stiffness and elongation-to-failure as they are key 

to the forming behaviour of composites in rapid forming. A significant drop in 

formability is observed when the both composite materials are uniaxial loaded at 

temperatures higher than 140 ˚C, and the mechanism behind this observation is 

determined from the observations in FTIR, TG mass and DSC examinations. This 

section shows that the chemical treatments have the potential to outperform preheating 

in improving the formability of natural fibre composites. The causes of change in 

mechanical responses in chemical treatments are also determined through SEM 

examinations on the fractured surfaces. 
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4.2 Preheating treatments 

4.2.1 Effect of temperature on tensile properties 

 

(a)                                                                   (b) 

Figure 4.1: High temperature tensile behaviour of natural fibre composites. (a) NFC; (b) 

CNFC. 

 

In order to understand the mechanical responses of both composites at elevated 

temperatures, tensile tests are performed at temperatures between room temperature and 

160 ˚C through an Instron™ testing frame which included a heat chamber. Heating 

natural fibre composites to any temperatures above 160 ˚C results in composite 

delamination, and is therefore avoided. Figure 4.1 shows that as temperature increases 

both composites exhibit improved elongation-to-failure as well as reduced stiffness. At 

room temperature, not much stress transfer between the flax fibres occurs, resulting in 

fibre breakage at small strains. At higher temperatures, the polypropylene matrix starts 

to soften, which helps transfer stress within the composite and in turn leads to an 

increased elongation-to-failure. It is essential to note that preheating can increase the 

limiting strains of NFC by 59%, and CNFC 40%. At higher temperature, the composite 

becomes soft and this leads to reduction in stiffness.  
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4.2.2 Mechanisms behind thermal degradation 

When either composite material system is formed at higher temperatures, a significantly 

reduced formability is observed as described in Section 6.2, a property attributable to 

the thermal degradation of natural fibre composites. In order to determine the cause of 

this thermal degradation, FTIR, TG mass and DSC examinations were conducted. In the 

FTIR examination both composites were analysed at 23 ˚C, 120 ˚C, and 150 ˚C; in both 

TG mass and DSC examinations they were heated from room temperature to 200 ˚C. 

Given that the woven structure has an insignificant effect on thermal degradation, all 

examinations were conducted on NFCs only. 

 

Figure 4.2: FTIR curves of the NFC at 23 ˚C, 120 ˚C and 150 ˚C. 

 

Figure 4.3: TG mass curve of flax/pp composite. 
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Examination of the FTIR curves shown in Figure 4.2 illustrates that there are no 

additional or missing peaks, suggesting that no chemical groups form or original 

chemical groups disappear when the natural fibre composite is heated from room 

temperature to 150 ˚C. Chemical change is therefore probably not the dominant 

mechanism for thermal degradation. This is confirmed by the TG mass curve, as shown 

in Figure 4.3, that there is an insignificant change in the TG mass of the composite 

when it is heated from ambient temperature to 200 ˚C, suggesting an insignificant 

amount of weight change due to decomposition. A DSC examination was conducted to 

investigate the flow behaviour of the composite during thermal degradation, and Figure 

4.4 shows that the composite melts between 155 ˚C and 170 ˚C. Thermal degradation 

temperatures observed in the composite closely coincide with its melting point. When 

the composite melts, it exhibits a greater molecular mobility and shows a decrease in 

material properties, which leads to thermal degradation [126]. Based on the information 

provided by the supplier, the flax fibres used in the composite degrade at approximately 

170 ˚C over a sustained heating period and degrade very quickly beyond 200 ˚C. 

According to the literature, polypropylene melts between 150 ˚C and 170 ˚C [127] which 

is close to the thermal degradation temperature. Therefore, the major mechanism behind 

thermal degradation observed in natural fibre composites must be physical changes 

(melting) of the polypropylene matrix. 

 

Figure 4.4: Differential Scanning Calorimetry (DSC) curves of the flax reinforced 

polypropylene composite. 
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4.3 Chemical treatments 

Distilled water, a 0.5M Sodium Hydroxide solution (NaOH), a 12%wt% M.A solution 

and a Cloudy Ammonia (C.A.) solution with 20g/l of ammonia were selected to 

determine the effect of chemical treatments on the physical and mechanical properties 

of NFC and CNFC materials. Rectangular specimens of 15 mm × 150 mm were 

produced to test composite behaviour during moisture ingress and moisture egress 

processes, as well as for tensile tests on strength, stiffness, and elongation-to-failure. 

For the NFC samples, the samples were cut so that fibres were oriented at 0 ˚/90 ˚ to the 

sample axis. Selected failed samples were then prepared for SEM examination using a 

Hitachi 4300 Field Emission Electron Microscope. All samples were lightly platinum 

coated.   

 

4.3.1 Composites behaviour during moisture ingress and egress  

Figures 4.5 and 4.6 show the moisture ingress (to saturation) and moisture egress 

(subsequently dried) curves for the NFC and CNFC. Samples were rectangular 

dimensions 15 × 150 mm. Solution uptake is defined as the gain in weight of the 

specimen as a ratio of its original weight (Δm(t) in %), and is defined through the 

following expression. During the moisture egression process, the weight of the 

specimen is reduced to approximately its original weight (100% solution uptake). 

                                 ∆𝒎(𝒕) =  
𝑾𝒕−𝑾𝒐

𝑾𝒐
∗ 𝟏𝟎𝟎%                                                       (4.1) 

where 𝑊𝑜 is the original weight of the specimen and 𝑊𝑡 is the weight of the specimen at 

time t. The samples were weighed after removal from the liquid reservoirs and 

immediate shaking to remove surface moisture. No surface moisture was detected 

during this weighing process and the samples were returned to the reservoirs once a 

stable weight reading had been recorded. Five repeats were used for each treatment in 

this study. 
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 (a) (b)  

Figure 4.5: The rate of solution uptake, and subsequent moisture egress from saturation 

for the NFC rectangular samples, (a) Moisture ingression process; (b) Moisture 

egression process.  

  

(a) (b) 

Figure 4.6: The rate of solution uptake, and subsequent moisture egress from 

saturation for the CNFC rectangular samples, (a) Moisture ingression process; (b) 

Moisture egression process.  

 

The samples all reach the maximum amount of chemical solution uptake in a similar, 

short amount of time, which is much quicker than in other systems, such as those 

reported by Wang et al. [36], who showed that a HDPE/rice husk composites system 
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(with volume fraction ranging from 40 to 60% and dimensions of 12cm × 12cm × 2.4 

cm) reached saturation after over 270 hours of immersion in water. One reason for this 

fast saturation time is likely to be the high porosity observed in these samples. The M.A. 

solution has the highest solution density and both composites have the lowest amount of 

solution uptake in M.A. treatment compared to other treatments. No gaseous by-

products were observed in any system.  

 

A small amount of residual weight remained in dried samples treated with NaOH and 

M.A. This is not surprising given that both of these solutions were mixed from dry 

chemical powders and so would most likely remain in the sample after water has been 

dried off. In addition, it was noted that the dye used to colour the fibres in the CNFC 

samples (mostly blue and red) had been removed during the saturation process but this 

was thought not to affect the weight change measurements or to contribute to any 

chemical reaction.  
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(a) 

   

 (b) 

Figure 4.7: Optical micrographs of NFC composite (left) and the CNFC composite 

(right). The top images are of the composite surface while the bottom images are of the 

central cross-section. 

 

Figure 4.7 illustrates that both composite material systems have significant porosity 

issues throughout the sample thickness, suggesting consolidation issues such as gaseous 

emission during the manufacturing process. Previous research (e.g. [128]) has 

demonstrated that synthetic fibre composites can attain porosity levels of less than 1% if 

processed accurately. Such low values are not yet possible in natural fibre/thermoplastic 

composites, as no processing technology can compensate for the very low wettability 

properties seen in these materials, which can also lead to poor interfacial quality [102]. 

The current study estimates that porosity levels in excess of 25% occur, with the higher 

values seen in the NFC materials. This may be the reason for the smaller saturation 

levels seen in the NFC sample set as air bubbles may prevent moisture from progressing 

to the fibre/matrix interface, which is probably where most of the moisture probably 

1 mm 
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resides. Indeed, since polypropylene is hydrophobic, only the flax fibre and the flax-

polypropylene interface can absorb the solutions. Because of this, it is reasonable to 

assume that the fibre/matrix interface (and the fibres themselves) will exhibit chemical 

and physical changes (permanent or not) which will affect mechanical properties such 

as tensile behaviour and formability. Similar findings have been obtained by previous 

studies [43, 129]. 

 

4.3.2 Variations of the mechanical properties 

           

(a)                                                               (b)                                 

         

                                      (c) 

Figure 4.8: Variations in mechanical properties of the NFC under different chemical 

treatments obtained through tensile tests, (a) tensile strain; (b) tensile modulus; and (c) 

strength. 
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Figure 4.8 shows how the mechanical properties of NFC samples vary with treatment. 

Tensile stiffness is permanently reduced by the saturation/drying process, whereas 

elongation-to-fracture is increased significantly when saturated, but largely returns to 

pre-soaked values when dried suggesting a non-permanent effect. Strength, however, 

doesn’t seem to be statistically affected by the saturation/drying process, although the 

maleic anhydride-treated samples may have statistically weakened.  

 

In the NFC samples, the fibres are in the form of a 2 × 2 twill structure. Therefore, it is 

expected that in the NFC samples, the fibres are more restricted in their possible 

movement during tensile testing and will only elongate in the weave directions. In 

woven composites, the failure mechanisms are fibre-dominated and so if any change 

happens within the cellulosic fibres during soaking, they would be more apparent in the 

NFC samples.  

 

Overall, the water and C.A solution treated samples appear to be identical and give 

significant improvements in strength and elongation-to-failure when saturated. These 

properties return to pre-treated levels when dried, indicating no permanent effect. The 

apparent increase in strength when saturated could be due to the softening of the fibres 

(and interfacial region), allowing for the weave structure to deform prior to fracture, as 

the warp and weft morphologies effectively realign. This study suggests that the 

chemical changes that cause these property variations are strongest in solutions that do 

not contain relatively bulky solute substances (maleic anhydride or sodium hydroxide). 

Given that such solutions have more difficulty permeating the material compared to 

pure water or ammonia (and thus completely hydrolysing the interfacial region), this is 

not surprising. Also, plasticization of flax fibres is a known phenomenon as explained in 
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[130] using pure water and ammonia treatments – which are often used as plasticizers 

for wood. 

     

                                 (a)                                                                     (b) 

 

                                  (c) 

Figure 4.9: Tensile property data for CNFC samples under various aqueous treatments 

showing (a) tensile strain; (b) tensile modulus; and (c) strength. 

 

The corresponding mechanical responses seen in the CNFC material are detailed in 

Figure 4.9. Compared to the NFC sample set, there are some differences in mechanical 

properties. Firstly, the magnitude of the irreversible change in stiffness seems much 

larger severe in the CNFC materials, particularly when redried. Secondly, the strength 

values seem to decrease when soaked in pure water or cloudy ammonia solution and 

return back to original values when redried. It is also noted that, as with the previous 
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sample set, the maleic anhydride-treated material appears to be permanently stronger 

than the others.  

 

The stiffness results suggest that the fibre/matrix interface has been permanently altered. 

There is a small amount of stiffness recovery when redried, but the reduction effect is 

largely permanent. When the samples are saturated, all treatments significantly increase 

elongation properties while decreasing the stiffness response, suggesting that 

formability has been improved without loss of strength. Given that both elongation and 

strength show minimal variation in the two dry conditions, a process that can form the 

materials whilst wet would be very advantageous, especially in designs where stiffness 

response is of secondary importance. According to Van de Velde and Kiekens [131], 

treatment with maleic anhydride should improve the interfacial strength between fibre 

and matrix. However, this effect is not evident in this study, probably because the 

aqueous and saturated nature of the treatment does not allow for the chemical to form 

the correct chemical bonds with the constituents. Such treatments are often invoked 

using dry conditions such as adding anhydride powder to the liquid polymer, or soaking 

the fibres in an anhydride solution which is then subsequently dried prior to mixing with 

the polymer. 

 

Figure 4.10 shows SEM images of CNFC fracture surfaces from samples tested under 

different conditions.  For the untreated and dried specimens, the fractured flax fibre 

bundles are coated with polypropylene matrix and flax fibres bundles cannot be easily 

differentiated from the polypropylene matrix. This is a statistically consistent 

observation suggesting a relatively strong interface between the flax fibre and the 

polypropylene matrix [132]. Clean fibre surfaces are seen in the saturated sample, that is, 

there appears to be no post-fractured resin regions adhered to the fibre surface, and this 
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is indicative of a much weaker fibre-matrix interface when hydrolysed. It has been 

reported [43] that when solutions are absorbed by the fibre/matrix interface, the 

cellulosic fibres tend to swell which favours fibre debonding and weakens the 

fibre/matrix interface leading to tensile property variations. This would appear to be the 

case for the current study, as the interfacial properties (stiffness and elongation) are 

significantly changed when wet. In addition, the strength of the materials appears 

remain largely independent of the saturation and redrying process and no significant 

changes to fibre fracture morphology was detected during the fractographic study. 

Therefore, if the cellulosic fibres swell during the saturation process, they remain 

chemically unchanged, whilst initiating changes at the interfacial region. On drying, the 

fibre-matrix integrity seems to return, but there is a permanent reduction in composite 

stiffness. This could suggest the presence of an interphase region which remains 

permanently weakened from the saturation process. Thus when dried, the samples retain 

strength (no fibre changes observed), and regain their interfacial characteristics (as per 

the SEM observations) whilst maintaining a reduced stiffness through mechanical 

weakness in the interphase region, which may be pre-existing, or may have formed as a 

result of the saturation process. Mishra and Sain [133] documented a similar finding 

that the stiffness of natural fibre composite did not fully recover after drying the 

samples, and this permanent damage to the fibre was attributed to the interfacial 

degradation and structure breakdown of the cell wall in natural fibres. A possible 

exception to these trends is the maleic anhydride-treated material, where strength seems 

to be permanently reduced once the samples are dried. This could be due to chemical 

ingress of the anhydride solution into the cellulosic fibres which when dried, cause 

chemical changes that permanently weaken the fibres, although this was not detected 

during fractographic examination. 
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Figure 4.10: Electron microscope images of CNFC reinforced PP composites showing 

(a) untreated; (b) saturated; and (c) redried samples that have been fractured under 

simple tensile testing. 

 

Overall, given the nature of the reinforcement fibre fracture mechanisms will tend to be 

more dominant in the woven twill (NFC) samples than in the random fibre (CNFC) 

samples and so the changes observed in the NFC samples could be due to some fibre 

plasticization effect that is most evident in pure water and ammonia treatments, and this 

effect may dominate over the interphase and interface-based mechanisms seen in the 

CNFC samples. It is likely therefore, that both mechanisms exist in both material 

systems, with one clearly dominating the other. From Figures 4.8 and 4.10, it is clear 

that, given the significant increase in elongation-to-failure values, the formability of the 

water and ammonia-soaked natural fibre composites should radically differ from dry 

equivalents, and this should be apparent in comparative forming experiments. The 

corresponding increase in strength would be important in structure strength design, but 

this could be less important in displacement control forming tests performed in this 

study. The relative decrease in stiffness in the NFC samples is lower than in the CNFC 

samples, but if stiffness changes are driven by interfacial/interphase phenomena, they 

would be less influential in the NFC samples anyway. Also, the fact that stiffness 

changes seem to be somewhat reversible when redrying occurs suggests that 

mechanically, NFC materials should revert back to their pre-treated properties when 

a b c 
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dried. This makes them quite attractive as a material for structures where significant 

drawing is required, so long as they can be processed when wet. 

 

4.4 Summary 

This Chapter has studied the mechanical behaviour of natural fibre composites at 

elevated temperatures, as well as in different conditions of water treatment. Both 

composites were stretched at a constant rate until failure at different temperatures 

varying from room temperature to 160˚C. The experimental results show that preheating 

treatment can help natural fibre composites exhibit an increased elongation-to-failure, as 

well as a reduced stiffness. Composites were also stretched in different conditions of 

water treatment, including the untreated, water-treated and redried conditions. 

Observations suggest that it is very advantageous to process this class of material 

system in the wet condition, especially since the mechanical properties can be largely 

returned to the untreated levels after redrying. Based on SEM examinations on the 

fractured surfaces, the dominating mechanisms behind the variations of mechanical 

properties have been determined to be softening in fibre-matrix interface (for the CNFC 

materials) and fibre plasticization (for NFC materials). Preheating is usually required to 

improve the formability of material in rapid forming, and the chemical treatments 

performed in this study were far more effective than preheating in terms of improving 

the mechanical responses of composite materials in simple forming conditions. Chapters 

5 and 6 investigate whether such major breakthrough could be translated to a superior 

formability of this class of material system in more complicated forming situations. 
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Chapter 5  

Stretch Forming Tests 

5.1 Introduction 

This Chapter details the stretch forming experiments conducted, and investigates the 

failure behaviour of the composites through examining displacement and strain 

deformation captured by a real-time strain measurement, the ARAMIS™ system. The 

key finding of the current work is that it proposes an innovative failure criterion for 

woven composites, called a “new FLC”, which uses fibre strain and strain ratio as 

key parameters. This new failure criterion is more effective than the conventional 

FLC in detecting the failure in woven natural fibre composites as it can successfully 

eliminate the path dependency effect. This innovative method of examining failure can 

be applied to engineering structural design and analysis of different woven composite 

systems as long as the failure mechanism is dominated by fibre fracture. The previous 

Chapter has proved that pure water and C.A produce the greatest improvement on the 

failure elongation of both composites in the saturation condition than other chemicals 

and the conventional preheating method. Part of the scope of this investigation is 

therefore to examine the forming limits of composites in three conditions of water 

treatment: untreated, water-treated and redried. FEA simulations are an essential tool in 

engineering structural design and analysis, and the development of the new FLC would 

be much less useful if this failure criterion could not be implemented in FEA models. 

Here, FEA models are developed to simulate the stretch forming process of composites 

in different conditions, and to compare the new FLC with existing failure criteria in 

predicting the onset of failure in stretch forming tests. 
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5.2 Experimental observations  

When analysing the forming behaviour of composites, the centre of the material 

(referred to as the pole) is of great interest. This region undergoes the largest 

displacement during forming, and exhibits a deformation mode that is affected by 

geometry as well as fibre orientation. The higher state of strain deformation at the pole 

compared to the other parts of the sample usually results in the onset of failure in this 

region. This is a major advantage when conducting forming tests as it can help establish 

the limiting strain conditions of the material in each deformation mode, ranging from 

biaxial-stretch to pure shear. Figure 5.1 shows strain evolution at the pole, and in this 

case data is obtained from a UF70 NFC specimen. 

 

Figure 5.1: Typical strain evolution at the pole in a stretch forming test. 

 

Strain evolution at the pole can be identified as three separate stages including pre-

stretch, biaxial-stretch and the major forming path. By analysing the evolution of 

principal strains at the pole, Sexton [19] found that the change in strain ratio, and 

therefore the deformation mode, is caused by minor strains, implying that restriction in 
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the lateral direction is a key factor for changes in strain ratio. Specimens are fixed to the 

blank-holder through tightening six M12 bolts with a torque of 15 kN.m on the lock 

ring mounted beneath. This pre-stretch process results in initial strain deformation, the 

details of which are explained later. A composite exhibits a forming mode of biaxial 

stretch when it establishes initial contact with the punch. At this stage, only a small 

region at the pole deforms and the rest of the material surface can be considered as fixed, 

resulting in the forming mode of biaxial stretch during this period. As soon as the lateral 

restriction starts to disappear, bi-axial stretch behaviour ends and the third stage starts. 

At this stage, the composite is allowed to be drawn into the die cavity in the lateral 

direction due to the lack of restriction in this direction. The strain information at failure 

can therefore be obtained by the ARAMIS system, and used for constructing Forming 

Limit Curve, the details of which are described in Sections 5.2.1.4 and 5.2.2.2. 

 

5.2.1 NFC materials 

The benefit of conducting stretch forming tests is to find out the forming limits in 

different deformation modes. To examine the changes in deformation modes during 

stretch forming tests, the evolution of surface strain ratio is studied at the end of each of 

the three stages. The relationship between deformation modes and strain ratios is 

illustrated in Table 2.2 of Chapter 2. The ARAMIS™ system does not have built-in 

algorithms to provide information on strain ratio, so a Python script is developed to 

calculate this. To avoid illegal floating point issues, the script deals specifically with the 

situation when the ARAMIS™ system reports a major strain of 0. In such cases, a strain 

ratio of 0 is reported, instead of taking the ratio between the principal strains. It is noted 

that prior to forming, a lock-ring was used to fix specimens completely, avoiding 

materials at the flange regions from drawing into the die cavity. Too large or too small 

tightening torque leads to either premature failure when the composite fails during pre-
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stretch, or edge movement. None of these two phenomena are identified during 

experiments. 

  

5.2.1.1 Evolution of surface strain ratios 

Seven geometries in total are tested, the evolutions of surface strain ratios of which are 

described in Figures 5.2-5.5. Figure 5.2 shows the surface strain evolution of the full 

circle specimen, and Figures 5.3-5.5 compare the effect of fibre orientations on surface 

strain ratio for hourglass specimens with a width of 100 mm, 70 mm and 25 mm, 

respectively. 

 

    

 
Figure 5.2: Evolution of contours of surface strain ratio (deformation mode) and FLD 

for UF200 specimen. 

 

Figure 5.2 illustrates the evolution of surface strain ratios and FLD of the UF200 

specimen. The UF200 specimen does not exhibit the bi-axial stretch stage (stage 2) as 
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the major deformation mode remains unchanged during forming. In the pre-stretching 

stage, only the central region of the specimen is formed in the major deformation mode 

of biaxial-stretch. The rest part of the material is slightly strained, leading to a random 

distribution of strain ratios. It needs to be noted that the major deformation mode at the 

centre of the specimen remains biaxial-stretch during the entire forming process, and 

this region experience the highest strain deformation prior to failure. The visual 

examination on formed parts also confirmed that the failure initiates at this area. Based 

on the surface strain ratio distribution at the stage just prior to failure, the unsupported 

regions experience a major deformation mode of plane strain with no pure shear. A 

considerably smaller amount of strain deformation is experienced in stage 1 as 

compared to other geometries described later, which can be attributed to the fact that the 

similar amount of pre-stretch force is acting on a larger area (the UF200 specimen is the 

largest sample). 
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(a) 

       

 

 (b) 

Figure 5.3: Evolution of contours of surface strain ratio (deformation mode) and FLD, 

(a) UF100; (b) UO100. 
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Figure 5.3 compares the surface strain evolutions of the UF100 and UO100 specimens. 

It is clear to note that the hourglass samples with a width of 100 mm is able to withstand 

a much larger strain deformation, from less than 8% to more than 10%, if the stretch 

direction changes from 0˚/90˚ to 45˚/-45˚ to the fibre directions. This observation is also 

obtained in other hourglass geometries, which can be attributed to the trellising 

behaviour of woven composites. The flax fibres tend to rotate over each other under 

trellising such that they are no longer perpendicular to each other. This leads to the 

reduction on the amount of strain acting along the fibres, and therefore helps the 

composite withstand a larger strain deformation. Although the 45˚/-45˚ specimens 

experience a much larger strain deformation compared to the 0˚/90˚ equivalent 

composite, the major deformation modes are similar to both samples. In the biaxial-

stretch stage, a clear trend of an almost equal increase in major strain and minor strain at 

the pole is observed. It needs to be recognised that regions other than the pole 

experience little change in strain deformation at this stage, indicating that the centre of 

the specimen is deformed to a much greater extent than other areas. This observation is 

clear and consistent for hourglass samples with a width of 100 mm and 70 mm. 
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(a) 

             

 
(b) 

Figure 5.4: Evolution of contours of surface strain ratio (deformation mode) and FLD, 

(a) UF70; (b) UO70. 
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It is observed that for samples with a width less than 100 mm, the fibre orientation has a 

dominating effect over sample geometry, as the 45°/-45° samples exhibits a 

considerably different major deformation mode compared to the 0°/90° equivalent 

sample. For instance, Figure 5.4 clearly shows that the UO70 specimen experiences 

smaller (more negative) strain ratio compared to the UF70 specimen, at each forming 

stage. It seems that sample geometry has a dominating effect over stretch orientation for 

samples with small widths, due to a small portion of material being fixed at the flange 

region. Due to the tapered geometry, the pole of the specimens experiences higher 

major strain than the rest of the areas during forming. In the pre-stretch stage, 45°/-45° 

specimens experience significantly larger strain deformation compared to 0°/90° 

equivalent composites. This is expected because a similar amount of force is applied to 

the sample edges, and the composite exhibits a significantly lower stiffness in off-fibre 

directions. In addition, given the same fibre orientation, smaller strain deformation is 

observed in larger samples.  
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(a) 

 

               

 
(b) 

 

Figure 5.5: Evolution of contours of surface strain ratio (deformation mode) and FLD, 

(a) UF25; (b) UO25. 
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It is important to notice that the NFC materials exhibit different major deformation 

modes in 25 mm hourglass samples when the fibre orientation changes from 0˚/90˚ to 

45˚/-45˚. The UF25 specimen experiences small deformation in the pre-stretch state, 

followed by a noticeable amount of biaxial stretch in stage two, and finally fails in the 

deformation mode close to uniaxial tension. It is observed that the UO25 sample could 

withstand major strains higher than 20% just prior to failure, which is significantly 

higher compared to the other samples, especially those formed with the 0°/90° fibre 

orientation. This specimen also experiences very little variation of the FLD during the 

bi-axial stretch behaviour. The restriction along the lateral direction vanishes quickly, 

and as it does in the bi-axial stretch stage.  

 

For 0˚/90˚ hourglass usually experiencing stretching in stretch forming tests, while the 

dominating deformation mode of 45˚/-45˚ hourglass samples is shear, especially those 

with smaller widths. The woven structure can help NFC samples exhibit pure shear 

when off-fibre hourglass samples are formed in which the flax fibres rotate over each 

other within the ply without being significantly stretched. This trellising behaviour 

could help this class of material systems to exhibit a significant amount of strain 

deformation prior to failure. 0˚/90˚ NFC samples, on the contrary, is dominated by 

stretching during forming, leading to failure caused by fibre fracture at smaller forming 

depths.  

 

This section has shown that the experimental setup of the stretch forming tests 

conducted in this work could help woven composite materials experience different 

deformation mode during forming, and more importantly fail at different forming 

modes. This is essential when validating the efficiency of failure criterion as an 

effective one should be able to predict the failure initiated in different forming modes.    
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5.2.1.2 Fibre strain calculations 

For the NFC materials investigated in this study, the major failure mechanism is 

identified as fibre fracture. This is a consistent observation obtained from both visual 

observations and microscopic examinations of tested composite samples, and the details 

of this are described in Section 6.2.1.1 and 6.2.2.1. One of the key contributions of the 

current work is that it proposes an innovative failure criterion for woven composites 

which are dominated by fibre fractures. This new failure criterion uses fibre strain as 

the key parameter, and therefore requires tracking the evolution of the flax fibres 

during forming, especially when composites trellis under shear deformation. This 

section explains the kinematics used to track the evolution of fibre movements as well 

as to calculate fibre strains, followed by the development of an algorithm used in the 

ARAMIS system to compute fibre strains. 
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(a)                                                         (b) 

 

                                        (c)                                                        (d)  

Figure 5.6: Illustration of how to calculate fibre strain (a) overview; (b) normal strain in 

the x direction; (c) normal strain in the y direction; and (d) shear strain. 

 

Figure 5.6 illustrates how to transform strains in the original X, Y and shear directions 

to the principal direction after rotation. Figure 5.6a shows that under shear deformation, 

the flax fibres are aligned with the Xꞌ and Yꞌꞌ directions, and that the Yꞌ direction is 

perpendicular to the Xꞌ direction. According to strain measurements, incremental strains 

in the global coordinate system can be calculated as: 

                 ∆𝛆𝐱
𝐢 = 𝛆𝐱

𝐢 − 𝛆𝐱
𝐢−𝟏 ,   ∆𝛆𝐲

𝐢 = 𝛆𝐲
𝐢 − 𝛆𝐲

𝐢−𝟏,  ∆𝛄𝐱𝐲
𝐢 = 𝛄𝐱𝐲

𝐢 − 𝛄𝐱𝐲
𝐢−𝟏       (5. 1)            

where i represents the ith increment of the calculation, 𝜀𝑥, 𝜀𝑦,𝛾𝑥𝑦 are the strains in global 

X, Y and shear directions, and ∆𝜀𝑥, ∆𝜀𝑦,∆𝛾𝑥𝑦  represent the incremental strains in the 

global X, Y and shear directions.  
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The elongation along the Xꞌ direction is computed first, and its components along the X 

and Y directions can be calculated as: 

                                       𝒅𝒙′,𝒊 = 𝒅𝒙/ 𝐜𝐨𝐬 𝜽𝒊,   𝒅𝒙′,𝒊 = 𝒅𝒚/ 𝐬𝐢𝐧 𝜽𝒊                             (5. 2)                                    

where 𝑑𝑥, 𝑑𝑦, 𝑑𝑥′,𝑖  correspond to the elongations along the X, Y and Xꞌ directions, 

respectively, and 𝜃𝑖 represents the angle of rotation. 

 

The resultant incremental elongation along the Xꞌ direction is the sum of components 

from the normal strain in the X direction, the normal strain in the Y direction and shear 

strain (as described in Figures 5.6 b-d). 

            𝜹𝒙′,𝒊 = ∆𝜺𝒙
𝒊𝒅𝒙𝐜𝐨𝐬 𝜽𝒊 + ∆𝜺𝒚

𝒊 𝒅𝒚𝐬𝐢𝐧 𝜽𝒊 

+𝟏/𝟐 ∗ ∆𝜸𝒙𝒚
𝒊∆𝜺𝒚

𝒊 𝐜𝐨𝐬 𝜽𝒊+𝟏/𝟐 ∗ ∆𝜸𝒙𝒚
𝒊∆𝜺𝒙

𝒊 𝐬𝐢𝐧𝜽𝒊                   (5. 3)                            

 ∆𝜺𝒙
′,𝒊 = 𝜹𝜺𝒙

′,𝒊/𝒅𝒙′,𝒊                                               (5. 4)                                                   

                  ∆ 𝜺𝒙
′,𝒊 = ∆𝜺𝒙

𝒊 𝐜𝐨𝐬𝟐 𝜽𝒊 + ∆𝜺𝒚
𝒊 𝐬𝐢𝐧𝟐 𝜽𝒊 + ∆𝜸𝒙𝒚

𝒊 𝐬𝐢𝐧 𝜽𝒊 𝐜𝐨𝐬 𝜽𝒊             (5. 5)                 

where 𝛿𝑥′,𝑖 is the resultant incremental elongation along the Xꞌ direction, and ∆ 𝜀𝑥
′,𝑖

 is 

the incremental strain along the Xꞌ direction.  

 

The incremental strain along the Xꞌ direction in Equation 5.5 can be simplified to the 

expression shown in Equation 5.6 based on trigonometric identities. 

∆ 𝜺𝒙
′,𝒊 =

∆𝜺𝒙
𝒊+∆𝜺𝒚

𝒊

𝟐
+
∆𝜺𝒙
𝒊−∆𝜺𝒚

𝒊

𝟐
𝐜𝐨𝐬 𝟐𝜽𝒊 +

∆𝜸𝒙𝒚
𝒊

𝟐
𝒔𝒊𝒏𝟐𝜽𝒊                     (5. 6)                         

The incremental elongation and incremental strain along the Yꞌ direction can be 

obtained by substituting (90+𝜃𝑖) for 𝜃𝑖 in Equations 5.3 and 5.6. 

𝜹𝒚′,𝒊 = −∆𝜺𝒙
𝒊𝒅𝒙𝒔𝒊𝒏𝜽𝒊 + ∆𝜺𝒚

𝒊 𝒅𝒚𝐜𝐨𝐬 𝜽𝒊 

−𝟏/𝟐 ∗ ∆𝜸𝒙𝒚
𝒊∆𝜺𝒚

𝒊 𝒔𝒊𝒏𝜽𝒊+𝟏/𝟐 ∗ ∆𝜸𝒙𝒚
𝒊∆𝜺𝒙

𝒊 𝐜𝐨𝐬𝜽𝒊                            (5. 7)                          

     ∆𝜺𝒚
′,𝒊 =

∆𝜺𝒙
𝒊+∆𝜺𝒚

𝒊

𝟐
−
∆𝜺𝒙
𝒊−∆𝜺𝒚

𝒊

𝟐
𝐜𝐨𝐬 𝟐𝜽𝒊 −

∆𝜸𝒙𝒚
𝒊

𝟐
𝒔𝒊𝒏𝟐𝜽𝒊                          (5. 8)                        
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where 𝛿𝑦′,𝑖 is the resultant incremental elongation along the Yꞌ direction, and ∆ 𝜀𝑦
′,𝑖

 is 

the incremental strain along the Yꞌ direction.  

 

The incremental angle of rotation is then calculated.  

∆𝛄𝐱𝐲′
,𝐢 = 𝛅𝐲′,𝐢/𝐝𝐱′,𝐢 + 𝛅𝐱′,𝐢/𝐝𝐲′,𝐢                                      (5. 9) 

𝜹𝒚′,𝒊/𝒅𝒙′,𝒊 = (−∆𝜺𝒙
𝒊 + ∆𝜺𝒚

𝒊) 𝐬𝐢𝐧 𝜽𝒊 𝐜𝐨𝐬 𝜽𝒊 − ∆𝜸𝒙𝒚
𝒊 𝐬𝐢𝐧𝟐 𝜽𝒊          (5. 10)              

𝜹𝒙′,𝒊/𝒅𝒚′,𝒊 = (−∆𝜺𝒙
𝒊 +−∆𝜺𝒚

𝒊 ) 𝐬𝐢𝐧 𝜽𝒊 𝐜𝐨𝐬𝜽𝒊 + ∆𝜸𝒙𝒚
𝒊 𝐜𝐨𝐬𝟐 𝜽𝒊         (5. 11)            

∆𝛄𝐱𝐲′
,𝐢 = −(∆𝛆𝐱

𝐢 − ∆𝛆𝐲
𝐢)𝐬𝐢𝐧𝟐𝛉𝐢 + ∆𝛄𝐱𝐲

𝐢𝐜𝐨𝐬𝟐𝛉𝐢                    (5. 12)                     

Where ∆𝛾𝑥𝑦′
,𝑖 is the incremental angle of rotation. 

Incremental strain along another fibre direction (the Y’’ direction) can be computed by 

substituting (90-𝜃𝑖) for 𝜃𝑖 in Equation 5.8. 

∆ 𝛆𝐲
′′,𝐢 =

∆𝛆𝟏
𝐢 +∆𝛆𝟐

𝐢

𝟐
−
∆𝛆𝟏
𝐢 −∆𝛆𝟐

𝐢

𝟐
𝐜𝐨𝐬 𝟐𝛉𝐢 +

∆𝛄𝟏𝟐
𝐢

𝟐
𝐬𝐢𝐧𝟐𝛉𝐢                (5.13)                  

Where ∆ 𝜀𝑦
′′,𝑖

 is the incremental strain along the Yꞌꞌ direction. 

 

Fibre strains in both directions are then updated accordingly. The maximum of these 

two strain values is used to represent fibre strain at this point when establishing the new 

FLC.  

𝛆𝐗
𝐢 = 𝛆𝐗

𝐢−𝟏 +  ∆𝛆𝐱
′,𝐢

                                          (5.14)                                                

𝛆𝐘
𝐢 = 𝛆𝐘

𝐢−𝟏 +  ∆𝛆𝐲
′′,𝐢

                                        (5.15) 

𝛆𝐟𝐢𝐛𝐫𝐞
𝐢 = 𝐦𝐚𝐱𝐢𝐦𝐮𝐦(𝛆𝐗

𝐢, 𝛆𝐘
𝐢)                                (5.16) 

Where 𝜀𝑋
𝑖 and 𝜀𝑌

𝑖 represent the strain along the fibre directions, and 𝜀𝑓𝑖𝑏𝑟𝑒
𝑖 is the fibre 

strain used in the new FLC.  

 

At the end of each increment, the angle of rotation should also be updated and is given 

by the following expression. 

𝛉𝐢+𝟏 = 𝛉𝐢 + ∆𝛄𝐱𝐲′
,𝐢                                      (5. 17)                                              
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ARAMIS™ system does not have built-in algorithms to calculate fibre strains, a user-

defined Python script is therefore developed to facilitate fibre strain calculations, and 

this script is incorporated to the ARAMIS™ system. At any given stage, fibre strain is 

the sum of incremental fibre strains in all the previous stages, which are calculated from 

the incremental normal strains and shear strains in global axes, and the angle that the 

fibre axes have rotated with respect to their original coordinates. This value should be 

used instead of that calculated based on the current state of strain, which is 

overestimated as the angle between the weft and warp directions is changing all the time. 

For a given point, the fibre strain in both directions can be determined, and the one with 

a larger absolute value is used when establishing the new FLC for the composite. Figure 

5.7 shows the flow chart of the Python script developed for fibre strain calculations. 

With this script, the ARAMIS™ system is able to output fibre strains for each mesh 

point at every time step.  

 



§5.2 Experimental observations 

95 
 

 

Figure 5.7: Flow chart of the Python script developed for the ARAMIS™ system. 

 

5.2.1.3 Anomalies observed in the conventional FLD 

The conventional FLD for the NFC materials is firstly examined. The UF100 and 

UO100 samples are selected and compared as both specimens exhibit similar forming 

modes in stretch forming experiments, which is of importance in determining the 

forming limits of the composite. It is noted that the flax fibres in the UF100 specimen 

are oriented 0°/90° to the stretching axis, while the UO100 specimen has its flax fibres 

oriented 45°/-45° to the stretching axis. 
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(a)                                                              (b) 

Figure 5.8: Surface strain distributions of the UF100 and UO100 specimens at the stage 

of failure (a) the conventional FLD; (b) the new FLD. 

 

Figure 5.8 shows the comparison on surface strain distribution from the same UF100 

and UO100 specimens at the stage just before failure, and the only difference is that 

these two samples are compared in different axes. Figure 5.8a is plotted on the 

conventional FLD (major strain versus minor strain), while Figure 5.8b is plotted on the 

new FLD (fibre strain against strain ratio). Each dot in the figure above represents a 

surface point of the composite specimens, the strain information of which is provided 

by the ARAMIS™ system. Figure 5.8a shows the surface strain distributions of two 

specimens using the conventional FLD just before failure, and it suggests that even 

though the two specimens exhibit similar forming modes, the UO100 sample 

experiences considerably higher limiting major strain just before failure. Under shear 

deformation, the trellising behaviour of the woven composite allows the flax fibres in 

the warp and weft directions to move over each other within the ply such that they are 

no longer perpendicular to each other. This results in a larger depth to failure (13.3 mm 

for the UF100 specimen, and 14.7 mm for the UO100 specimen), and therefore 

increased principal strains. This is combined with the much larger elongation-to-failure 
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of the polypropylene matrix compared to the flax fibres, as described in the previous 

section. Based on the strain distributions, the limiting principal strain defined by one of 

these two specimens is not applicable to the other. This observation would indicate that 

the composite exhibits varying limiting principal strains at the same forming mode, 

implying that the conventional FLC is not suitable for describing the failure behaviour 

of this class of material system. 

 

In metal forming, it is customary to discuss major strain and minor strain. In woven 

composites, however, the strain acting on the fibres and the matrix should be considered 

due to the difference in mechanical properties. The current work found that the flax 

fibre reinforced polypropylene composite exhibits a major failure mechanism of fibre 

fracture at room temperature. For the composite analysed in the current study, the flax 

fibres are the limiting factors for elongation of the composite due to the significantly 

lower elongation-to-failure of the flax fibres compared to that of the polypropylene 

matrix. Figure 5.8b shows that on the plot of fibre strain against strain ratio, both 

specimens exhibit a very similar distribution. Even though the UF100 and UO100 

specimens are formed to different depths, the flax fibres are strained to a similar extent 

at failure; the difference observed in principal strains is attributed to the strain acting on 

the polypropylene matrix which contributes little to the composite failure. This further 

highlights the possibility of establishing the new FLC for the natural fibre composite 

using fibre strain and strain ratio. In the work conducted by Zanjani et al. [73], a self-

reinforced polypropylene composite exhibited a failure behaviour induced by both the 

fibres and the matrix. The amount of strain acting on the matrix thus contributed to the 

onset of failure in the composite, validating the application of conventional FLC to the 

composite in this case.  
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5.2.1.4 Investigation on the path dependency effect of the conventional 

FLC 

It has been demonstrated that the conventional FLC is not applicable to predict failure 

initiated in woven composites. Path dependency effect means that the limiting major 

strain of a surface point is influenced by its historical strain path, and this effect is the 

mechanism behind the inapplicability of the conventional FLC. This section examines 

the path dependency effect of the conventional FLC, and investigates whether such 

issue can be resolved by using the new FLC.  

        

(a) 

  

(b) 

Figure 5.9: Comparison of a tensile specimen (left) with a UO70 specimen (right) (a) 

tested samples; (b) the evolution of the strain path on the conventional FLD (left) and 

on the new FLD (right). 

Failed 

Failed Unfailed 

Unfailed 
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To investigate the path dependency effect of the woven composite, two points from the 

tensile specimen and the UO70 sample are selected and their evolutions of principal 

strains are compared. The point of interest from the tensile specimen is located along 

the line of fracture, while that of the UO70 specimen is located slightly above the pole 

and remains unfailed during the stretch forming test. These two points share a similar 

deformation mode at the stage of comparison, but experience entirely different historical 

paths, which is of importance to examine the effect of path dependency on the 

conventional FLC.  

 

Figure 5.9 compares principal strain evolutions of the pole of the UO70 specimen with 

that of the tensile specimen on a conventional Forming Limit Diagram (FLD). Strain 

deformation of the tensile specimen is obtained at the stage of failure, while that of the 

UO70 specimen is obtained at a forming depth of 14 mm, given that the failure depth is 

16.2 mm, this surface point therefore remains unfailed at the last stage of the curve. 

Forming modes can be represented by different strain ratios in the FLD, ranging from 

biaxial stretch (1) to pure shear (-1). Even though both specimens experience the same 

forming mode of uniaxial tension at the stage of selection, it is noted that the unfailed 

specimen (UO70) could withstand significantly higher limiting principal strains 

compared to failed specimen (the tensile specimen). Unlike the tensile specimen which 

experiences a single forming mode (constant strain path), the UO70 specimen 

experiences changes in strain path due to the nature of stretch forming tests as explained 

later. This suggests a path dependency phenomenon, such that the limiting principal 

strains are influenced by the evolution path.  

 

The evolutions of strain path of the same two points of interest are now compared on a 

plot of fibre strain against strain ratio. Evidently, although principal strains are 
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significantly higher, the maximum fibre strain of the unfailed points (from the UO70 

specimen) does not exceed the limiting fibre strains defined by the failed point (from 

the tensile specimen). This demonstrates that using fibre strain can help eliminate the 

path dependency effect, which can be attributed to the fact that fibre strain calculations 

require tracking of the evolution of fibre movements. Experimental observations also 

highlight the possibility of establishing a new FLC using fibre strain and strain ratio, 

and the new FLC is expected to be more effective than the conventional one. 

 

To further investigate the mechanism behind path dependency effects, the evolution of 

strain deformation at the point of interest in both specimens is studied, as shown in 

figure 5.10. In uniaxial tension tests, the sample experiences a single deformation mode, 

resulting in a constant strain path. This linear strain path is different to the strain path 

history observed in stretch forming test, details of which is explained in Section 5.2. 

 

  

(a)                                                             (b) 

Figure 5.10: Strain evolutions (a) the UO70 specimen; (b) the tensile specimen. 

 

Figure 5.10 shows the evolutions of major strain and its constituents at the same surface 

points used in Figure 5.9. In uniaxial tension tests, the major strain is dominated by the 

strain along the stretching direction, and the perpendicular direction experiences a 
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negative strain deformation due to the Poisson’s effect. The shear component is 

insignificant in tensile specimen, whereas the UO70 specimen is dominated by its shear 

strain component which is larger than the strains in the longitudinal direction and 

transverse directions. As found earlier, the flax fibre reinforced polypropylene 

composite exhibits a major failure mode of fibre fracture [126]. Therefore, the flax 

fibres should be the limiting factor for the elongation of the composite due to a much 

lower elongation-to-failure of the flax fibres compared to the polypropylene matrix. It is 

therefore hypothesised that the amount of strain acting on the flax fibres is influential in 

composite failure whereas shear strain has little effect. In addition to this, large shear 

strains are suggested as the cause of the path dependency phenomenon observed in the 

conventional FLC. Again, this is because shear strains can lead to higher principal 

strains, but not necessarily the onset of failure in this class of material system.   

 

5.2.1.5 Establishing the new FLC for the composite 

In metal forming, there can be a clear progress from the onset of localised necking to 

catastrophic failure. It is, therefore, feasible to identify the safe, marginal and failed 

regions of the FLC for metals. The composite analysed in this study exhibits a low 

resistance to crack propagation, and failure propagates very quickly during forming. 

Therefore, for this class of material system there is no marginal region. The new FLC, 

as shown in Figure 5.11, represents the limiting fibre strain of the composite in all 

forming modes ranging from pure shear (strain ratio of -1) to biaxial stretch (strain ratio 

of 1). 
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Figure 5.11: Formation of the new FLC for the untreated composite. From left to right 

at top: formed specimens are F25, F70, F100 and F200. 

 

In this study, the limiting fibre strain in certain strain ratios cannot be observed from the 

failure regions. For the O25 and O70 specimens which exhibit a major forming mode of 

pure shear, the failure initiates at the flange region which during forming is blocked 

from the cameras by the tools. However, safe regions are established based on unfailed 

points, and it is expected that the limiting fibre strain is higher than that suggested by 

the safe regions.  

 

Figure 5.11 shows the new FLC over the surface strain distributions of all specimens at 

the stage of failure, over a wide range of forming modes. Most points above the 
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proposed failure envelope are located along line fractures in formed specimens, which 

are expected to be regions where failure initiates. Small localised imperfections cannot 

be eliminated from consolidated composites, resulting in an increase of principal strains 

over allowable limits in some regions without failure being experienced. Since the new 

FLC considers fibre strain, it must be emphasised that this method can only predict 

failures for composites where the failure mechanism is dominated by fibres. Compared 

to the conventional FLC, which requires only major strain and minor strain, the new 

FLC needs more information on surface strains, and more importantly the evolutions of 

these strains. Clearly, successfully tracking the evolution of fibre movements is 

fundamental in determining the forming limit of this class of material system, which 

highlights the need of surface strain measurement equipment such as the ARAMIS™ 

system.  

 

A similar approach is used to establish the new FLC for the composite in water-treated 

and redried conditions, and Figure 5.12 compares the new FLCs in different conditions 

of water treatment. A significantly expanded forming envelope is observed in the water-

treated specimen. Such observations can be expected from the improvement in 

elongation-to-failure, and again indicate an exceptional formability of the water-treated 

composite. This class of material system is therefore very attractive and can be easily 

used to form parts of a high level of complexity if they can be processed wet in 

advance. 
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Figure 5.12: The new FLCs for the composite in different conditions of water treatment. 

The tested samples are F25, F70, F100, and F200 (water-treated, redried, and untreated 

from top to bottom, respectively). 
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The new FLCs for the composite in different conditions are expressed in Equations 5.18 

to 5.20. It is important to note that the composite exhibits a significantly expanded 

forming envelope in the water-treated condition, such that the limiting fibre strains of 

the water-treated composites are increased by 25% in biaxial-stretch, 50% in plane 

strain, and 70% in uniaxial tension (compared to the untreated composite). This is 

expected, given the improvement in elongation-to-failure discussed in the previous 

section, and again indicates good formability of the water-treated composite. This class 

of material system is therefore very attractive and can be easily used to form the 

products with complex shapes if they can be processed whilst wet. 

 

For the untreated composite: 

                                 𝜺𝑳𝒊𝒎𝒊𝒕 = {

𝟔%                                      𝟎 < 𝜷 < 𝟏
𝜷 ∗ 𝟑. 𝟑% + 𝟔%           − 𝟎. 𝟑 < 𝜷 < 𝟎
−𝜷 ∗ 𝟓%+ 𝟑. 𝟓%    − 𝟎. 𝟔 < 𝜷 < −𝟎. 𝟑

𝜷 ∗ 𝟓. 𝟖% + 𝟏𝟎%           − 𝟏. 𝟐 < 𝜷 < −𝟎. 𝟔

          (5.18) 

For the water-treated composite: 

                                 𝜺𝑳𝒊𝒎𝒊𝒕 =

{
 
 

 
 
−𝜷 ∗ 𝟓%+ 𝟏𝟐. 𝟓%                  𝟎. 𝟕 < 𝜷 < 𝟏
𝟗%                                              𝟎 < 𝜷 < 𝟎. 𝟕
   𝜷 ∗ 𝟏. 𝟔𝟕% + 𝟗%                − 𝟎. 𝟑 < 𝜷 < 𝟎
−𝜷 ∗ 𝟓%+ 𝟕%           − 𝟎. 𝟓 < 𝜷 < −𝟎. 𝟑
𝜷 ∗ 𝟔%+ 𝟏𝟐. 𝟓%           − 𝟏. 𝟐 < 𝜷 < −𝟎. 𝟓

          (5.19) 

For the redried composite: 

                                 𝜺𝑳𝒊𝒎𝒊𝒕 = {

𝟔. 𝟏%                                      𝟎 < 𝜷 < 𝟏
𝜷 ∗ 𝟐%+ 𝟔. 𝟏%           − 𝟎. 𝟑 < 𝜷 < 𝟎
−𝜷 ∗ 𝟓%+ 𝟒%         − 𝟎. 𝟔 < 𝜷 < −𝟎. 𝟑
𝜷 ∗ 𝟓%+ 𝟗%            − 𝟏. 𝟐 < 𝜷 < −𝟎. 𝟔

               (5.20) 

 

where 𝜀𝐿𝑖𝑚𝑖𝑡 is the limiting fibre strain, and 𝛽 is the strain ratio. Again, it needs to be 

noticed that the actual limiting fibre strains are greater than the values suggested by the 

equations above in those regions represented by dashed lines.  

 



Stretch Forming Tests 

106 
 

5.2.1.6 Comparison with the Maximum Strain failure criterion 

The Maximum Strain failure criterion (a strain based failure criterion) is selected to 

compare with the new FLC proposed in this study. Tensile tests were performed to 

generate failure strain data for the Maximum Strain criterion. Rectangular specimens of 

15 mm by 150 mm were produced, and the composites were cut in such a way that the 

flax fibres were oriented at 0°/90° and 45°/-45° to the sample axis to obtain normal 

failure strain and shear failure strain. Tensile tests were conducted through an Instron™ 

4505 testing machine, and the specimens were stretched at a constant rate of 5 mm/s 

with failure being defined as the applied load dropped to 40% of its maximum. 

 

Figure 5.13: Comparison between the new FLC and the Maximum Strain failure 

criterion. 

 

Through tensile tests, it is observed that the composite has an elongation-to-failure 

around 5% when it is stretched along fibre orientations. The new FLC suggests a 

limiting fibre elongation of around 5% at a strain ratio of -0.3, given that the composite 

has a Poisson’s ratio of around 0.3 and is therefore in uniaxial tension. The limiting 

fibre strain can exceed 5% in several forming modes, and as large as 6% when the strain 
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ratio is positive or even 6.5% when the strain ratio is -0.5. Evidently, limiting fibre 

strain is affected by the forming mode experienced by the composite, and can be 

attributed to the woven structure of the composite in which the interactions between the 

fibres and the matrix are influential. For the Maximum Strain failure criterion, the 

failure in the forming mode of pure shear is judged by the limiting shear strain, which is 

significantly higher than limiting normal strain. In other forming modes, the Maximum 

Strain failure criterion suggests that the failure strain on fibres is a constant, as shown in 

Figure 5.13. The assumption that there is no interaction between different constituents 

seems to be oversimplified for predicting failure in woven composites. For further 

comparison, the new FLC and the Maximum Strain failure criterion are implemented in 

FEA simulations in Section 5.3.4.2.  

 

5.2.2 CNFC materials  

The major difference between NFC and CNFC materials is that the later composite does 

not exhibit directionality. It behaves predominantly like isotropic material, meaning that 

the stiffness and elongation-to-failure are the same in all directions.  
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5.2.2.1 Evolution of surface strain ratios 

    

 
(a) 

 

 
(b) 
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(c) 

       

 
(d) 

Figure 5.14: Evolution of contours of surface strain ratio (deformation mode) and FLD. 

(a) U200; (b) U100; (c) U70; and (d) U25. 
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Similar to NFC materials, strain ratio information of CNFC specimens is calculated by 

the python script created in this work. Figure 5.14 above shows the surface contour of 

strain ratio for each sample, as well as the FLDs at the end of each stage. The amount of 

strain deformation is very small at the edges of surface contours, leading to some 

extremely negative strain ratios. In the pre-stretch stage, all specimens (except the full 

circle sample which exhibits a major deformation mode of biaxial stretch) experience 

negligible minor strain, suggesting unequal restriction in the longitudinal and transverse 

directions. These samples are pulled at both edges in the pre-stretch stage, leading to a 

deformation mode of in between uniaxial tension and plane strain. As lateral restriction 

increases with wider samples, the major deformation mode moves towards plane strain 

(as observed in U70 and U100), suggesting that the lateral direction remains unstrained 

while both edges are pulling away from each other. Equal amounts of force are applied 

to the U200 sample from every direction, resulting in a major deformation mode close 

to biaxial-stretch. In addition, none of the samples exhibits a major deformation mode 

of pure shear due to the predominantly isotropic nature of CNFC materials. 

Observations of FLDs at the end of the first stage show a clear trend of lowered 

maximum strain deformation as sample width increases.   

 

For the full circle sample or the U200 specimen, the composite exhibits a major 

deformation mode of biaxial stretch during forming, since the entire sample edge is 

completely fixed during forming. Therefore, unlike other geometries which have three 

separate stages, the UF200 specimen has only two stages (stage 1 and stage 3). For the 

U70 and U100 specimens, the pole and its nearby regions shift from the negative minor 

strain region to the positive minor strain region in the biaxial stretch behaviour. Similar 

behaviour is not obvious for the U25 sample, which can be attributed to the fact that the 

biaxial stretch behaviour disappears very quickly due to a small sample width. In the 
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third stage, specimens exhibit their major deformation mode which is influenced by the 

sample geometry.  

 

Unlike NFC materials, CNFC materials could not exhibit pure shear behaviour during 

stretch forming experiments, which is attributed to the fibre reinforcement nature of 

CNFC samples. The lack of deformation mode of pure shear also results in larger 

amount of strains acting on the fibres, leading to lower deformation depths. The 

application of short chopped fibres would help recycle composites at the end of its use-

life, and it seems that a trade-off needs to be made between ease for recycling and better 

formability.  

 

5.2.2.2 Constructing the FLC  

The construction of the FLC of the CNFC is based on the principal strain values 

provided by the ARAMIS™ system. Line fractures in CNFC materials can be narrowed 

down to short segments where the failure initiates, and this is achieved by setting the 

frame rate of the ARAMIS™ system to its maximum of 15 images per second. Principal 

strains of these small segments at the stage just prior to failure are used to construct the 

FLC, as shown in Figure 5.15. Note that the surface point experiencing strain 

deformation above the FLC is considered failure. Using FLC to describe failure 

behaviour provides a quantitative measure for defining the limiting major strains as a 

function of minor strain, and such mathematical relations can be implemented in FEA 

models through a user-defined material subroutine.  
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Figure 5.15: FLC of the CNFC materials obtained from stretch forming tests. 

 

Similar to the procedure used to construct the FLC for the untreated specimens, the 

water-treated as well as the redried samples were cut into hourglass shapes (with 

varying middle sectional widths) and then formed into a hemispherical dome. 

Significantly improved elongation-to-failure has been noticed in the water-treated 

CNFC materials. Figure 5.16 shows that the increased elongation-to-failure can be 

translated to an increased forming envelope. Numerically, FLCs in different conditions 

of water treatment can be expressed in the following equations 5.21-5.23. It is not 

surprising that the redried composite has very similar forming limits to the untreated 

composite, as ductility has been largely returned to the untreated level when drying 

from the wet condition. Compared to these two dry conditions, the CNFC exhibits a 

significantly expanded forming envelope in the water-treated conditions, such that the 

limiting major strains are increased by 61% in biaxial stretch, and 92.8% in plane strain. 
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For the untreated composite: 

   𝛆𝟏
′ = {

−𝟕𝟖. 𝟔𝟗 ∗ 𝛆𝟐
𝟐 + 𝟏. 𝟕𝟗 ∗ 𝛆𝟐 + 𝟎. 𝟎𝟑        𝟎% < 𝛆𝟐 < 𝟐%

−𝟏𝟑𝟗 ∗ 𝛆𝟐
𝟐 − 𝟏. 𝟔𝟕 ∗ 𝛆𝟐 + 𝟎. 𝟎𝟑          − 𝟎. 𝟔% < 𝛆𝟐 < 𝟎%

            (5. 21)                      

 

For the water-treated composite: 

   𝛆𝟏
′ = {

𝟎. 𝟎𝟔𝟕𝟓                                                               𝟎% < 𝛆𝟐 < 𝟑%

−𝟏𝟖𝟑 ∗ 𝛆𝟐
𝟐 − 𝟐. 𝟎𝟏 ∗ 𝛆𝟐 + 𝟎. 𝟎𝟔𝟕𝟓       − 𝟎. 𝟕% < 𝛆𝟐 < 𝟎%

        (5. 22)  

 

For the redried composite: 

𝛆𝟏
′ = {

−𝟐𝟓. 𝟗𝟔 ∗ 𝛆𝐌𝐢𝐧𝐨𝐫
𝟐 + 𝟎. 𝟕𝟑 ∗ 𝛆𝐌𝐢𝐧𝐨𝐫 + 𝟎. 𝟎𝟑𝟓        𝟎% < 𝛆𝐌𝐢𝐧𝐨𝐫 < 𝟐. 𝟏%

−𝟐𝟓𝟎 ∗ 𝛆𝐌𝐢𝐧𝐨𝐫
𝟐 − 𝟑. 𝟓 ∗ 𝛆𝐌𝐢𝐧𝐨𝐫 + 𝟎. 𝟎𝟑𝟓          − 𝟎. 𝟓𝟓% < 𝛆𝐌𝐢𝐧𝐨𝐫 < 𝟎%

    

(5. 23)  

where 𝜀𝑀𝑎𝑗𝑜𝑟
′ is limiting major strain; and 𝜀𝑀𝑖𝑛𝑜𝑟 is minor strain.  

 

 

Figure 5.16: Effect of water treatment on FLC for CNFC materials. 
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5.3 FEA simulations 

5.3.1 Material models 

Two composite materials, NFC and CNFC, are modelled in FEA simulations. Due to 

the random distribution of the chopped flax fibres, the CNFC is modelled as quasi-

isotropic. The stiffness matrix for the CNFC material is expressed in the following 

equation. 

[
 
 
 
 
 
𝝈𝟏𝟏
𝝈𝟐𝟐
𝝈𝟑𝟑
𝝉𝟐𝟑
𝝉𝟏𝟑
𝝉𝟏𝟐 ]

 
 
 
 
 

=

[
 
 
 
 
 
𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑
𝑪𝟏𝟐 𝑪𝟐𝟐 𝑪𝟐𝟑
𝑪𝟏𝟑 𝑪𝟐𝟑 𝑪𝟑𝟑

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝑪𝟒𝟒 𝟎 𝟎
𝟎 𝑪𝟓𝟓 𝟎
𝟎 𝟎 𝑪𝟔𝟔]

 
 
 
 
 

×

[
 
 
 
 
 
𝜺𝟏𝟏
𝜺𝟐𝟐
𝜺𝟑𝟑
𝜸𝟐𝟑
𝜸𝟏𝟑
𝜸𝟏𝟐]

 
 
 
 
 

                   (5.24) 

 

These coefficients are computed using equations for the micromechanical behaviour of a 

lamina.  

                                           𝑪𝟏𝟏 = 𝑪𝟐𝟐 =
𝑬

𝟏−𝒗𝟐
                                                  (5.25) 

                                                  𝑪𝟏𝟐 = 𝑪𝟐𝟏 =
𝑬𝒗

𝟏−𝒗𝟐
                                                  (5.26) 

                                                         𝑪𝟔𝟔 =
𝑬

𝟐(𝟏+𝒗)
                                                     (5.27)                                                      

                                                     𝑪𝟒𝟒 = 𝑪𝟓𝟓 =
𝟓

𝟔
𝑪𝟔𝟔                                               (5.28) 

where E is the stiffness obtained from the tensile tests stated in Chapter 3; and v is the 

Poisson ratio. Due to the linear nature, all coefficients in Equations 5.25-5.28 are 

constants. All other terms are zero, as shell elements do not consider out-of-plane 

stress. The NFC is characterised as orthotropic, and shares a similar stiffness matrix 

with CNFCs except that the in-plane shear stiffness C66 is determined by the method 

introduced in the Composites Materials - Design and Applications [134].  

 

The development of constitutive material modeling for both material is the first step of 

developing FEA simulation of the forming process. The accuracy of the constitutive 
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material properties is of great importance to the accuracy of the numerical simulation. 

The constitutive material models of both NFC and CNFC in different conditions of the 

water-treatment are illustrated in Appendix A and Appendix B, respectively.  

 

5.3.2 Model parameters 

Figure 5.17 shows a diagram of the parts modelled in the simulation, including punch, 

blank-holder, die and full circle flax/PP composite. The full circle specimen is replaced 

with the corresponding geometry when modelling other geometries. The die stays 

stationary during forming and the blank holder can only move vertically to allow the 

action of the blank holder force. The composite was meshed with S4R elements with an 

approximate size of 2 mm, resulting in more than 5,700 elements in full circle sample 

and around 2,500 elements in an hourglass sample with a width of 25 mm. The punch is 

placed just in contact with the blank and it is set to move down at a speed of 20 mm/s. 

Contact friction has a significant effect on material flow during forming, and penalty 

contact conditions are assigned to all contact conditions. All the tool geometries are 

defined as rigid parts and master surfaces, such that the tool is able to penetrate through 

the sample during forming rather than the other way around. The entire stretch forming 

simulation is divided into two separate steps, and this analysis procedure follows the 

experimental procedure. Two steps (Static, General), referred to as Pre-stretch and 

Forming, are defined in FEA simulations. In the Pre-stretch step, initial boundary 

conditions are assigned to simulate the lock-ring effect. In the Forming step, the punch 

is set to move down at a constant speed of 20 mm/s. The initial, minimum, and 

maximum increment size are defined as 0.1s, 10-10s, and 0.1s, respectively in both steps.  
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Figure 5.17: Layup of model geometries. 

 

5.3.3 Implementing the failure criterion in FEA simulations 

FEA simulations are an essential tool in engineering structural design and analysis, and 

the development of the new FLC would be much less useful if this failure criterion 

cannot be implemented in FEA models. One of the key contributions of the current 

study is to incorporate the FLC and the new FLC in FEA simulations through a user-

defined material subroutine. State dependent variable or solution-dependent state 

variable (SDV) can be calculated from built-in variables in the material subroutine (such 

as the strains in the global X, Y, and shear directions) through a self-defined relation, 

and updated at the end of each time increment. In order to implement the failure criteria, 

SDVs are created to facilitate calculations. In this study, the user-defined material 

subroutine provides two essential functions to FEA models, including material 

characterisation as well as failure criterion. For NFCs, eight SDVs are created in total to 

represent failure indicator, major strain, minor strain, failure flag, strain ratio, fibre 

strain along the weft direction, fibre strain along the warp direction and fibre strain. Due 

to the difference in the level of complexity, only the first four SDVs mentioned above 

are created for CNFCs. For both composites, if the induced fibre strain of a mesh node 

exceeds the value suggested by the failure criterion, the failure indicator is turned on 



§5.3 FEA simulations 

117 
 

and the stiffness in all directions reduces to 0, analogically creating a ‘crack’ so that the 

region can withstand applied stress. It is possible in FEA simulations but not reasonable 

or realistic, for a mesh node to fail and then to become ‘unfailed’ later during the 

forming process. To eliminate this unrealistic situation, a SDV named ‘flag’ is defined 

to ensure that once failure initiates at a mesh node, this point remains failed regardless 

of the future strain conditions. Figure 5.18 shows the flow chart of the user-defined 

material routine developed for NFCs, which is very close to that of CNFCs with a 

different stiffness matrix and failure criterion. 

 

 

Figure 5.18: Flow chart of the user-defined material routine for NFCs. 
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5.3.4 NFC materials 

5.3.4.1 Evolution of strain path at the pole 

 

(a) (b) 

Figure 5.19: Comparison of strain evolution at the pole between experimental 

observations and FEA simulations (a) 0°/90° samples; (b) 45°/-45° samples. 

 

The pole is the region of interest for stretch forming tests, and the strain evolution at this 

point is used to verify the FEA simulation developed in this study. Figure 5.19 shows 

that the strain evolutions of specimens with different sample widths and fibre 

orientations can be simulated by FEA simulations, validating the material properties as 

well as contact conditions. It is noted that the UO25 specimen is able to withstand a 

major strain of 22% at the stage of failure which is significantly higher than all the other 

samples. This can be explained by the trellising behaviour of the woven composite. The 

specimen is much less strained on the flax fibres under such a deformation mode, 

therefore exhibiting a very high state of principal strains prior to failure. It is observed 

that for specimens with large widths, sample geometry has a larger effect than stretch 

directions due to the increased restriction exerted from the tools. For example, the 

UF100 specimen shares a similar strain evolution with the FO100 sample. Larger 

specimens experience larger restrictions at the flange region, forcing composites to form 
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in similar major forming modes. The FEA simulations can predict this trend, and again 

the slight discrepancy can be attributed to the variation of the mechanical properties of 

flax fibres as well as to geometric unevenness caused by small localised imperfections.  

 

5.3.4.2 Comparison between the new FLC with the Maximum Strain 

failure criterion  

Based on visual observations on the formed specimens, failure can initiate at two 

different regions: the pole or the flange region. The pole of the specimen is stretched to 

a great extent during forming, and in 0°/90° specimens the high level of strain there 

causes failure. The O25 and O70 specimens experience a large shear deformation at the 

pole, which allows the composite to withstand a larger forming depth and results in 

failure at unsupported regions near the die edge. It is a statistically consistent 

observation that line fractures propagate along the fibre directions, regardless of fibre 

orientation and sample width. Accordingly, the failure regions of the F25 specimen are 

in the longitudinal and transverse directions, and those of the O25 specimen are at 45° 

to them as shown in Figure 5.20. This clearly implies that the flax fibres are the limiting 

factor for the elongation of the composite.  

     

(a)                                                           (b) 

Figure 5.20: Typical failure regions observed in the formed specimens (circled) and as 

predicted by the new FLC in FEA simulations (red patches) (a) F25; and (b) O25. 
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Specimens Experiment New FLC Maximum Strain 

failure criterion 

F25 Pole Pole Pole 

F70 Pole Pole Pole 

F100 Pole Pole Pole 

F200 Pole Pole Pole 

O25 Flange region Flange region Flange region 

O70 Flange region Flange region Flange region 

O100 Pole, flange region Flange region Flange region 

Table 5.1: Comparison of regions where failure initiates 

 

Both the new FLC and the Maximum Strain failure criterion have been successfully 

implemented in FEA simulations through a user-defined material routine. FEA models 

check each mesh element for failure at every stage of the forming simulation. If failure 

is deemed to have occurred in an element, the stiffness of the element in all directions is 

reduced to zero. The simulation can recalculate the behaviour of the material under the 

assumption that failed regions of the sample can no longer withstand applied stress. 

Table 5.1 summarises the failure regions observed in experiments and predicted by FEA 

simulations. It is noticed that both criteria can accurately predict the failure regions 

exhibited in the specimens. It is also observed that in the O100 specimens, the failure 

can initiate either at the pole or the flange region, suggesting that variations in strain 

distributions can result in a change in where failure occurs. This agrees with the 

findings obtained by Davey et al. [86].  
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Figure 5.21: Comparison of the forming depths for NFC materials. 

 

Figure 5.21 compares the experimental observations with FEA simulations of failure 

depths, defined as the vertical displacement of the pole at failure. Even though both 

criteria use fibre strain as the limiting factor for detecting failure, it seems that the new 

FLC can significantly improve the accuracy of the predicted failure depths compared to 

the Maximum Strain failure criteria. A large variation is noticed in the 0°/90° specimens 

where the Maximum Strain failure criteria consistently underestimates failure depths. 

The failure in 0°/90° specimens starts at the pole where the strain ratio is positive, and 

the Maximum Strain failure criterion suggests a constant failure strain (of 5%) which is 

obtained through tensile tests, and is considerably lower than the actual limiting fibre 

strain. Again, non-interactive failure criteria seem less accurate for pre-consolidated 

woven composites where interactions between the fibres and the matrix are considerable. 

This in turn highlights the need to consider forming modes when expressing the forming 

limits of this class of material system. It is notable that the new FLC is able to predict 

failure depths much more precisely than the Maximum Strain failure criterion, which 
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verifies the accuracy of the new failure criterion to predict failure in composites 

dominated by fibre fracture. 

 

It is also observed that 45°/-45° specimens generally exhibit a larger failure depth 

compared to 0°/90° equivalent specimens, which agrees with the finding of Wang et al. 

[126] that large shear deformation can aid in superior formability of composite materials. 

Both failure criteria can predict failure depths precisely in 45°/-45° specimens, and the 

difference between the two criteria is insignificant. Failure initiates at the flange region 

of 45°/-45° specimens, and Figure 5.22 suggests that these regions experience a strain 

ratio near -0.3, therefore in uniaxial tension where two criteria predict similar limiting 

fibre strains. It is therefore expected that both criteria predict similar forming depths of 

the composite when the failure initiates in the forming mode of uniaxial tension.     
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(a) O25 

 

(b) O70 

 

(C) O100 

Figure 5.22: Strain ratio of the failure regions in 45°/-45° specimens. Left: regions of 

failure predicted by FEA simulations (coloured in red); right: Strain ratio distribution of 

the top-right quarter of the specimen. 
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5.3.4.3 Predicting failure in different conditions of water treatment 

The new FLCs of the NFC in different conditions of the water treatment are 

implemented in FEA simulations through user-defined material subroutines. Similar to 

the observations in the formed untreated composites, failure initiates around the pole for 

0°/90° samples and at the free edges for 45°/-45° samples (the only exception being the 

45°/-45° specimen with a width of 100 mm, where the failure could initiate at either the 

pole or the flange region). The new FLC can precisely predict the regions of failure. It is 

statistically consistent that the failure regions propagate along the fibre directions, 

regardless of treatment.  

 

In addition to the locations where the failure initiates, the new FLC has been verified in 

terms of failure depths. Up to three repeats are tested for experimental geometries, and 

the specimen data are used to construct the range of forming depths observed in 

experiments. These observations are then compared to the forming depth predicted by 

the new FLC criterion in FEA simulations, as shown in Figure 5.23. Larger failure 

depths are observed in water-treated composites compared to dry equivalent samples, 

which is expected given the larger forming envelope of the composite in the wet 

condition. The composite also exhibits very similar failure depths in the untreated and 

redried conditions, since the tensile properties have been largely returned back to the 

untreated levels when redrying. Observations confirm that the new FLC proposed in the 

current study predicts reasonably in stretch forming tests of the failure depths of the 

composite in different conditions of water treatment, confirming its usefulness for 

natural fibre composites. 
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Figure 5.23: Comparison of forming depths observed in experiments, and as predicted 

by the FEA simulations. 

5.3.5 CNFC materials 

5.3.5.1 Evolution of strain path at the pole 

 

Figure 5.24: Strain evolution of the pole for untreated CNFCs. 

 

Figures 5.24 shows a comparison between experimental observations and FEA 

simulations of strain evolutions at the pole for untreated specimens with various middle-

section widths. It is clear that varying the sample geometry can change the deformation 

mode of the composite at failure: the composites exhibit a strain ratio of 0.13, 0.19, 0.52 
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and 0.83 from the thinnest to the widest sample, respectively. Note that strain evolutions 

from FEA simulations can correctly predict the progress of the major forming path for 

CNFCs, especially strain conditions at the transitions between different stages. It seems 

that the material properties assigned to the blank as well as the friction conditions 

defined between contacting pairs, appear to be accurate. In FEA simulations, the 

composite was modelled as a homogeneous material which exhibits the same 

mechanical properties at every single point of the surface. However, the composite does 

not behave ideally in a homogeneous way due to the variation of mechanical properties 

of flax fibres and the existence of voids. This can explain the slight discrepancy 

between experimental findings and FEA simulations. 
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5.3.5.2 Validating the FLC 

  

(a) U25                                                        (b) U70 

 

(c) U100 

 

(d) U200 

Figure 5.25: The failure regions observed in tested samples (left), and as predicted by 

FEA simulations (right). 

 

In stretch forming of CNFC materials, all untreated specimens exhibit failure at the 

region near the pole which remains in contact with the punch during forming and 
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experiences most strain deformation. Figure 5.25 shows that the FLC constructed in the 

current study can precisely predict the regions where failure initiates. It is noteworthy 

that the failure regions observed in the tested samples are much larger than in those 

predicted by the FLC. In the stretch forming tests conducted in this study, the punch 

was set to move down at a constant rate of 20 mm/s and then to return to its original 

position when the load drops by 40% from its maximum. It seems that the CNFC 

materials can still maintain its strength at the onset of failure, allowing the punch to 

move a larger displacement and leading to larger failure regions. It should be pointed 

out that the contour plot of the FEA simulations is taken at the stage when failure first 

initiates. It does not mean that the composite would exhibit failure regions like the ones 

coloured in red, instead it suggests that failure is most likely to initiate in those ‘flagged’ 

regions. The expansion of the failure region is not within the scope of this study as the 

material is considered useless as soon as it fails.  

 

In the wet condition, the elongation-to-failure of CNFCs is more than, and such an 

improvement can be reflected as a larger forming envelope. However, it seems that the 

improved formability cannot be translated to larger forming depths in stretch forming 

tests, as shown in Figure 5.26. Forming depth is defined as the punch displacement at 

the onset of failure. The water-treated composites can withstand larger forming depths 

compared to dry equivalent samples, with the improvement considerably less than that 

observed before (elongation-to-failure in uniaxial loading tests and FLC). One 

explanation is that at large forming depths the major strain at the pole evolves with a 

much steeper slope, and therefore the improvement in ductility cannot be entirely 

mirrored to failure depths in stretch forming tests. Observations show that the FLC can 

predict the failure depth of CNFC materials in stretch forming within a reasonable range, 

validating the effectiveness of the FLC constructed in this study.  
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Figure 5.26: Comparison of the failure depths for CNFC materials. 

 

5.4 Summary 

This Chapter has studied the forming behaviour of composite materials in stretch 

forming tests, and determined the forming limits for both NFC and CNFC materials. 

Composites are cut into hourglass shapes with various middle sectional width as well as 

fibre orientation to examine different forming modes. The stretch forming process can 

be identified as three separate stages based on changes in the major deformation mode, 

including: firstly pre-stretch, secondly bi-axial stretch and finally the major forming 

path. It is found that the woven structure of the NFC can help exhibit an additional 

deformation mode of pure shear compared to the CNFC. More importantly, under this 

deformation mode the NFC specimen is able to withstand much larger strain 

deformation, which agrees with the findings obtained by Wang et al. [126] that shear 

deformation can aid in superior formability for woven composites. It is also observed 

that for specimens with large widths, sample width has a dominating effect over stretch 

directions due to the increased restriction exerted by the tools.  
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The major reason to conduct stretch forming tests is to determine the forming limits of 

composite materials. This section has shown that the conventional FLC, which has been 

widely applied to metal forming, is a valid tool to express the forming envelope of 

CNFC materials. This is because CNFCs behave predominantly like an isotropic 

material. Based on the principal strain deformation provided by the ARAMIS system at 

the surface points where failure initiates, FLCs are constructed for CNFC materials in 

different conditions of water treatment. However, due to the path dependency effect, 

this conventional method is found incapable of accurately describing the forming limits 

of NFC materials. As a result, unfailed surface points are found to exhibit higher 

principal strains compared to failed ones when both points experience an identical 

deformation mode. A consistent observation is that the major failure mechanism of NFC 

materials is fibre fracture. By analysing the evolution of major strain and its Cartesian 

components, it has found that the path dependency is caused by the effect of strain 

deformation acting on the polypropylene matrix, which contributes little to composite 

failure. An innovative failure criterion, named the new FLC, is proposed which uses 

fibre strain and strain ratio as key parameters, and this new failure criterion can 

successfully eliminate path dependency as it tracks the evolution of fibre movements. In 

addition, the new FLC is considered more precise than the Maximum Strain failure 

criterion, which assumes that there is no interaction between different components of 

the composite. This assumption is clearly oversimplified for woven composites.  

 

FEA models are developed to simulate the forming process of both composites. From 

the way strain path evolves at the pole, it seems that the material properties and friction 

conditions for contact pairs appear to be accurate. One of contributions of the current 

work is that it creates material subroutines for examining the accuracy of failure criteria 

in FEA models. To facilitate this process, SDVs have been defined to determine if there 
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are any surface points experiencing strain deformation higher than the values suggested 

by the failure criteria. It is observed that the new FLC is much more accurate than the 

Maximum Strain failure criterion, especially for samples with a fibre orientation of 

0°/90°. By comparing FEA simulations with experimental observations, it is shown that 

the FLC and the new FLC can predict failure regions and failure depths of both 

composites in different conditions of water treatment. This Chapter has shown that the 

new FLC is superior to other strain-based failure criteria (the Maximum Strain failure 

criterion as well the conventional FLC), and this criterion should be applicable to any 

other woven composite systems as long as the dominating failure mechanism is fibre 

fracture. 

 

It is important to note that this failure criterion provides a new angle to view the failure 

theory of composite materials. This Chapter has proved that for composite materials, 

especially those with inextensible fibres, fibre strain should be focused on when 

studying the failure behaviour. By doing this, the path dependency issue observed in 

conventional FLC can be eliminated successfully. Although there are existing failure 

criteria, such as the Maximum Strain failure criterion, which consider the amount of 

strain acting on the fibres separately from the total strain deformation. It is confirmed 

that the limiting fibre strain is influenced by the deformation mode, and therefore 

should be expressed as a function of strain ratio. The new FLC defines a new method to 

examine/predict the failure of woven composites, which has the potential to be widely 

applied in failure study of composite materials.     
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Chapter 6  

Dome Forming Tests 

6.1 Introduction 

When circular samples were formed into a dome structure with the edges not being 

fixed completely, they will experience a combination of drawing and stretching. This 

Chapter compares the forming behaviour of composites when different treatments are 

applied, including preheating, water treatment and tailored blanks. By taking into 

account the thermal degradation of the composites, the optimal forming temperature 

windows are determined for this class of material system. Preheating has been widely 

used to improve the formability of material in rapid forming processes, and the water 

treatment performed in this study is found to almost double the forming depth of 

preheated equivalent samples. This important breakthrough in improving the 

formability of natural fibre composites can aid in rapid forming of this class of material 

system. Compared to the circular samples used in preheating and those which are given 

water treatment, tailored blanks suggest an innovative shape of composite in which four 

portions of material are cut out at the edges of 0°, 90°, 180° and 270° positions. The 

application of this experimental geometry encourages materials to be drawn into the die 

cavity during forming, and therefore helps achieve a larger forming depth. Based on 

strain deformation data provided by the ARAMIS™ system, the major mechanisms 

behind the improved formability of the treated composites have been determined. The 

FLC and the new FLC are constructed from stretch forming tests, and this Chapter 

validates the effectiveness of each of these two failure criteria in dome forming.   
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6.2 Experimental observations 

It is concluded from Chapter 4 that the water treatment can improve the ductility of 

natural fibre composites more effectively than preheating. The scope of this section is 

therefore to determine if the improved ductility can be reflected on increased 

formability in complicated forming conditions such as dome forming where specimens 

experience a combination of stretching and drawing. In dome forming all samples are 

cut into a circular shape with a diameter of 180 mm, and formed into a hemispherical 

dome structure at a punch rate of 20 mm/s. The amount of blank-holder force, ranging 

from 0 to 14 kN, can be pre-set via the computer connecting to the stamping press 

machine. A BHF of 7 kN is applied to the samples formed at different temperatures and 

conditions of water treatment. For the tests performed at elevated temperatures, samples 

are preheated to 15 ˚C above the forming temperature (to compensate for the 

temperature drop during transferring samples from the heat press machine to the 

stamping machine). The required adjustment is verified through temperature 

observations during the experimental process. In additional to high temperatures, the 

composites are formed in three different conditions of the water treatment: the untreated, 

water-treated and redried. The untreated samples are cut and tested as received from the 

material supplier without additional chemical treatments; the water-treated samples are 

formed at the maximum saturation level of the water solution; and the redried samples 

are saturated and then subsequently redried completely before forming. All tailored 

composites were cut by the mechanical scissor, and then formed at room temperature 

without the water treatment. 

 

6.2.1 NFC materials 

This section investigates the forming behaviour of NFC materials in dome forming tests. 

NFC materials exhibit a significantly increased formability when specimens are 
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experiencing various treatments and blank geometry change. From examinations on the 

formed specimens, fibre fracture is identified as the major failure mode exhibited in this 

class of material system. This observation on the formed specimens could justify the 

new FLC proposed in Chapter 5 which uses fibre strain as one of the key parameters. It 

is also within the scope of the current work to determine if there are mechanisms in 

addition to the increased ductility (as discussed in Chapter 4) that could help NFC 

specimens withstand a larger forming depths. The investigation is conducted through 

comparing the surface strain distributions which provide information on the major 

deformation of composites. 

 

6.2.1.1 Failure depths in dome forming tests 

Failure depth is defined as the punch displacement at the onset of failure in forming, 

and is also a direct indicator on the formability of forming material. This section 

compares the effect of two treatments, preheating and the water treatment, as well as 

that of different blank geometries, full circle and tailored shape. 

 

Figure 6.1: Comparison of forming depths. 
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Figure 6.1 compares the forming depths of the composite in three different conditions of 

water treatment - untreated, water-treated and redried - as well as that of the composite 

formed at the optimal forming temperature (T120) and that of the composite formed at 

the optimal tailored shape (R65). The untreated NFC fails at 18.9 mm, and the water-

treated NFC does not fail and reaches a forming depth of 55 mm which is the maximum 

depth limited by the dimensions of the tools. It is noted that the samples in the dry 

conditions (untreated and redried) share very similar forming depths, which mirrors the 

observations on tensile tests. It is noted that preheating can improve the formability of 

composites to some extent (an average failure depth of 30 mm), but this traditional 

method is much less effective than water treatment. It is found that water-treated 

composites are able to exhibit an almost doubled forming depth compared to the 

preheated equivalent sample. This suggests that the water-treatment is superior to 

preheating when forming natural fibre composites. An almost doubled ductility is 

observed when composite materials are tested in the wet conditions, as stated in Chapter 

4. It is worth noting that a significantly larger improvement in forming depth during 

dome forming (more than 175%) is observed. The mechanisms behind this observation 

are explained in details in a later section.  

 

A more than 50% increase in failure depth is observed when some materials are cut off 

along fibre directions. The use of tailored blanks can help NFC materials withstand a 

greater forming depth by reducing the amount of stretching experienced along the fibre 

directions, such that optimal tailored shape could withstand a forming depth of 30 mm. 

It is concluded that the application of this novel geometry could lead to similar 

improvement in forming depth of woven natural fibre composites as compared to the 

preheating treatment. Similarly, the basis of this observation is explained in the 

following section where surface strain distributions are studied. 
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Figure 6.2: Failure depths of NFCs at different temperatures. 

 

The conventional treatment, preheating, can improve the formability of NFC materials. 

The forming depths of NFC materials in different temperatures are studied, with a 

particular focus around temperatures where thermal degradation behaviour is observed. 

According to Figure 6.2, increasing the forming temperature from ambient to 120˚C 

increases the average failure depths by 55% (from 18.9 to 30.2 mm). Fibre fracture is 

the dominant failure mechanism for flax/pp composites (this is verified through 

microscopic examination on fractured surfaces, and detailed in the later section), and the 

flax fibres are able to withstand larger failure strain at high temperatures. In addition, 

due to its thermoplastic nature, polypropylene softens as temperature increases. 

Softening of the matrix helps the stress transfer between fibres which leads to even 

transformation of load through the specimen. These two effects explain the increase in 

failure depth from room temperature to 120˚C. After the preheat temperature of 130˚C 

there is a noticeable drop in failure depth, which is caused by the thermal degradation of 

the composite. The major mechanism behind the degradation of NFC materials is 

identified as the melting of the polypropylene matrix, as stated in Chapter 4. The 

identification of thermal degradation of composite is an important finding of this work 
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as it identifies the existence of an optimal forming temperature window for this class of 

material systems.   

 

However, there is no obvious reduction in the elongation-to-failure of the composites in 

the tensile tests performed at elevated temperatures. There are two reasons for the 

significant reduction in the forming depths of NFC materials at high temperatures: 

firstly, stiffness is reduced along fibre directions when the composite is preheated to 

high temperatures, which leads to more stretching, and in turn, results in larger strains 

acting on the composite. Secondly, the composite experiences two major deformation 

mechanisms of drawing and stretching during dome forming tests. According to the 

findings obtained by Venkatesan [18] who compared the formability of two woven 

composites with the same matrix material but different fibres in dome forming tests, a 

woven composite system with a smaller difference between stiffness in the fibre and 

shear directions experiences larger surface strains, especially along the fibre directions. 

It is therefore very likely that the composite would behave closer to an isotropic 

material at high temperatures as the fibre stiffness reduces and becomes closer to that in 

shear directions. Based on the Python script described in Chapter 5, fibre strains can be 

determined from the ARAMIS system at every stage of the forming process. Figure 6.3 

shows surface fibre strain deformation of 120˚C and 150˚C experimental cases. The 

comparison is obtained at a forming depth of 23 mm where the latter is just prior to 

failure, despite that the 120˚C experimental case could form to a larger depth. It is found 

that the 150 ˚C experimental case experiences much higher fibre strains over the surface, 

suggesting a possible combination of reduced stiffness and a forming behaviour closer 

to that of an isotropic material. 
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(a)                                                                            (b) 

Figure 6.3: Surface contour plot of fibre strains from (a) the 120˚C experimental case; 

(b) the 150˚C experimental case. 

 

6.2.1.2 Examination on failure regions 

In continuous fibre-reinforced composites, the common failure mechanisms include 

delamination, longitudinal matrix splitting, intra-laminar matrix cracking, fibre-matrix 

debonding, fibre pull out and fibre fracture [135]. Under microscopical examinations 

shown in Figure 6.4, fibre fracture is identified as the major failure mechanism of NFC 

materials, which rationalises the hypothesis that strain acting on the fibres should be 

considered when predicting the failure behaviour for this class of material system. It is 

observed that the most water-treated and tailored composites exhibit similar failure 

behaviour to that of the untreated and circular composite, which is a single failure 

region around the pole.  
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Figure 6.4: Microscopic examination of the fracture. 

 

However, it seems that NFC materials exhibit different failure types at different 

temperatures, as shown in Figure 6.5: at temperatures less than 100˚C, a single failure 

region due to fibre fracture (Figure 6.5.a); between 100˚C to 150˚C, multiple failure 

regions due to fibre fracture (Figure 6.5.b); and around 160˚C, a combination of fibre 

pull out and fibre fracture (Figure 6.5.c). 
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(a)                                                                         (b) 

   

(c)                                                                        (d) 

Figure 6.5: Tested samples formed (a) below 100˚C; (b) between 100˚C and 150˚C; (c) 

at 160˚C; (d) close-up view of fibre pull out with some fibre breakage in the sample 

formed at 160˚C. 

 

At low temperatures, there is not much stress transfer between fibres, resulting in fibre 

breakage around the punch contact region where large strains are experienced. In the 

experiments, the punch is set to continue to move down an additional displacement 

beyond the onset of composite failure. Specimens therefore experience additional 

deformation after the initiation of the fibre fracture, resulting in a line fracture, as 

Single Fracture 

Multiple Fractures 
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depicted in Figure 6.5a. Similar observations can also be obtained from redried, and 

most of tailored specimens. Polypropylene softens considerably around 100˚C. This in 

turn facilitates stress transfer between natural fibres and results in more uniform state of 

stress in specimens formed between 100 ˚C to 150 ˚C compared to specimens formed at 

temperatures below 100 ˚C. Forming at temperatures between 100 ˚C to 150 ˚C leads to 

the initiation of fibre fracture at multiple regions within a short amount of time, as well 

as a complicated post failure path and post failure shape. The failure mode switches 

from fibre facture to a combination of fibre fracture and fibre pull-out at 160 ˚C. When 

the forming temperature approaches the melting temperature of the polypropylene (160 

˚C), composite exhibits a greater molecular mobility and a reduction in molecular 

orientation. Hence the composite experiences a decrease in mechanical properties and a 

loss in anisotropy [61].  The degradation of the matrix around 160 ˚C leads to pull out 

of fibres from the matrix as the dominant failure mechanism with some fibre breakage.   

 

In addition to fibre fractures, out-of-plane buckling can also be observed in samples 

formed at 120 ˚C, as shown in Figure 6.6.  It is visually observed that samples formed at 

120 ˚C generally experience the most severe buckling. It is worth noting that this 

buckling effect does not expand to the formed dome structure and the buckled regions 

can be eliminated by the trimming process during manufacturing. Therefore, a buckling 

effect at the flange region is not considered significant in the forming of NFC materials. 
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Figure 6.6: Buckling of a flax/pp composite tested at 120˚C. 

 

Among all samples, the water-treated composite and R65 experimental case remain 

intact at the dome area during the test. However, wrinkles are observed at the flange 

regions of these two specimens. Unlike the composites formed at 120°C where the 

wrinkles occur at the flange, some of the wrinkles in the water-treated specimens extend 

to the dome structure, affecting the overall quality of the formed part. It needs to be 

noted that the wrinkling issue associated with the water-treated composite can be solved 

without compromising its superior formability of the composite, as described later. 

Since wrinkling at the flange region can be trimmed in the manufacturing process, as 

suggested for the T120 sample, the focus should be paid to the wrinkling on the dome 

structure. During forming, the die obstructs the flange of specimens from the view of 

ARAMIS™ cameras, thus it is difficult to predict the onset of wrinkling at the flange. 

The diameter of the formed specimen is found approximately 12% shorter along the 

fibre directions than at 45° to them, suggesting that the composite is drawn into the die 

cavity to a greater extent along the fibre directions. This can be attributed to a larger 

stiffness in the fibre directions compared to the off-fibre directions. In the fibre 

directions, the punch pulls fibres away from the tools at the flange, and causes the 

material to be drawn into the die cavity. For the materials oriented at 45°/-45°, the 

trellising behaviour allows the composite to withstand a greater amount of deformation, 
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and lowers its resistance to stretching. The difference in resistance to stretching explains 

the round-square shape of the formed specimen, as shown in Figure 6.7. When the 

composite is completely drawn into the die cavity along the 0°/90° directions, while is 

still being squeezed at the four corners, the material at the flange region tends to be 

drawn towards the centre of the specimen (in the die cavity) as well as to the sidewalls 

of the specimen (in the hook region of the die). The later mechanism induces lateral 

compressive stresses in the middle of each round-square edge, and this produces in the 

side-wall wrinkles. 

   

(a)                                                       (b) 

Figure 6.7: Water-treated natural fibre composites after forming to a depth of 55 mm. (a) 

diameter of 180 mm; (b) diameter of 200 mm. 

 

In sheet forming, both the initiation and growth of wrinkling depend on many factors 

including mechanical properties of the sheet, contact conditions, geometry of the 

workpiece, and etc. [136]. Therefore it is difficult to analyse the wrinkling behaviour, 

especially its onset simply from the dome forming tests alone. However, a method for 

minimizing wrinkling observed in formed specimens is investigated. A larger water-

treated specimen with a diameter of 200 mm is formed to the same depth of around 55 

mm, as shown in Figure 6.7, and it is observed that wrinkling is reduced considerably at 
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the flange region. More importantly, the dome structure remains free of wrinkles. It is 

therefore likely that the wrinkling behaviour observed in the water-treated composite 

(with a diameter of 180 mm) is mainly caused by not enough material at the flange 

region, which can be removed by using a specimen of the same shape but with a larger 

diameter (200 mm).  

 

The R65 sample can withstand the maximum failure depth limited by the dimensions of 

the tools (around 55 mm). However, similar to the water-treated composite, this tailored 

geometry starts to accumulate materials at sidewalls when the material at the flange 

region is completely drawn into the die cavity. According to the images taken by the 

ARAMIS system, wrinkling starts to propagate to the dome structure slightly beyond a 

forming depth of 30 mm, as shown in Figure 6.8. The composite is therefore considered 

to have failed at this forming depth. 

 

(a)                                                                     (b) 

Figure 6.8: The R65 specimen (a) from the right camera of the ARAMIS system; (b) the 

tested sample. 

 

It is important to note that fibre fracture is the dominating failure mechanism for this 

class of material system. Although wrinkling is observed in several samples, the 
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wrinkling effect is not considered as the major failure mode. Because it can either be 

removed from trimming process (the T120 sample), or eliminated by using a larger 

sample geometry (the water-treated sample). For tailored shapes, the failure mode 

would switch from fibre fracture to wrinkling when the inner radius is reduced to 65 

mm, as a result of less amount of material to be stretched at the flange region.  

 

6.2.1.3 Effect of treatments on forming modes  

Increased formability of a treated NFC is expected because of the increase in ductility. 

This section investigates whether there any other mechanisms exist besides the increase 

in elongation-to-failure. The forming modes experienced by a composite can be 

illustrated by its FLD. The use of the ARAMIS™ system facilitates surface strain 

measurements which can provide insights into the forming behaviour of composites at 

each time step of the forming process. Strain distributions over the entire surface can be 

compared using FLD. All strain distributions can be enveloped by strain ratios of -1, 

and 1, which is anticipated in typical dome forming experiments.  
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(a) 

 

  

           

                                                                             (b) 

Figure 6.9: Comparison of surface strain distribution at the stage of failure at different 

forming temperatures. (a) FLD; (b) Quantitative illustrations. 
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Figure 6.9 shows the surface strain distributions of samples tested at 23˚C, 120˚C and 

150˚C, respectively at the stage just prior to failure. It shows that forming at room 

temperature results in the least amount of formability in terms of forming depth. Around 

120˚C is shown to be the optimal temperature window for forming flax/pp composites. 

When the forming temperature is increased to 150 ˚C, a significant reduction in shear 

deformation is observed as a result of the thermal degradation of the composite.  

 

At ambient temperature, surface strain is mainly distributed as biaxial stretch and plain 

strain. When the polypropylene matrix is not soft, the composite exhibits an 

insignificant amount of shear deformation. Flax/pp composites have a much higher 

failure strain in the shear direction than in the fibre direction. Less than 5% of the 

surface points have a strain ratio less than -0.5, and the strain deformation in the shear 

direction is also much lower than in other deformation modes. The insignificant shear 

deformation at low temperature forming can be attributed to the low forming depths. By 

increasing the forming temperature to 120˚C, there is a significant increase (from less 

than 5% to approximately 25%) in the number of surface points experiencing the 

deformation mode of pure shear. In addition, at high temperatures strain deformation in 

the shear direction is also higher than that in other deformation modes. These 

observations suggest there is a change in major deformation modes when forming 

occurs at high temperatures. The effect of temperature is much more substantial in 

regions not in contact with the punch (regions experiencing forming modes of plane 

strain and pure shear) than in punch contact regions (regions experiencing biaxial 

stretch). This phenomenon suggests that at elevated temperatures, greater forming 

depths are permitted due to additional deformation in unsupported regions. 
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Compared to T120, there is a significant reduction in shear deformation for the samples 

formed at 150˚C. This in turn leads to a significant drop in forming depth. The drop in 

shear deformation can be attributed to the degradation of the composite, leading to the 

conclusion that by allowing the shear deformation to be the dominant forming mode, 

the optimal formability can be achieved for this class of composite materials. Even 

though both the T23 and T150 samples share a very similar population distribution, the 

latter sample experiences much higher strain values in almost every deformation mode. 

Again, the reasons are the significantly reduced stiffness and the behaviour closer to 

isotropic material system. 
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(a) 

 

         

(b) 

Figure 6.10: Comparisons of surface strain distribution in different conditions of water 

treatment. (a) FLD; (b) Quantitative illustrations. 
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A particular focus is paid on the water treatment, as this treatment is very effective for 

NFC materials. Although the water-treated specimen could be formed to a greater depth 

after water treatment, samples are compared at a forming depth of around 19 mm when 

the untreated and redried samples are just prior to failure. In Figure 6.10, surface points 

are grouped based on their strain ratio, and expressed in the bar chart. The average 

major strain is also plotted as a function of strain ratio to determine the change in strain 

deformation on forming modes. For the untreated and redried composites, 

approximately 60% of surface points experience a strain ratio in between -0.3 and 0.3, 

suggesting a major forming mode of plane strain. It is also observed that less than 3% of 

the dome area experiences pure shear, exhibiting a strain ratio of less than -0.5. On the 

contrary to untreated specimens, observations show that water treatment has altered 

the major deformation mode exhibited in the composite, such that the water-treated 

composite exhibits the major forming modes of uniaxial tension and pure shear. After 

the water treatment, there is an apparent increase in the population of surface points 

(from 3% to 30%) experiencing a forming mode of pure shear. Such a large surface 

population exhibiting a deformation mode of pure shear is not observed in untreated and 

redried equivalent samples. Previous studies have shown that large forming depths can 

be achieved if the material is permitted to undergo large amounts of shear deformation 

[36]. This can account for the significant increase in the forming depth of the water-

treated composite. It seems that the weakened fibre/matrix interface and softened flax 

fibres of the water-treated specimen help flax fibres in the weft and warp directions 

move over each other within the ply under shear deformation. Although a reduction in 

fibre stiffness is also observed in wet condition, it is clear that the composite exhibits a 

larger difference in stiffness between the fibre and shear orientations after saturation. A 

similar observation on the major deformation mode of pure shear at small forming 
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depths was found in a pre-consolidated woven carbon fibre reinforced PEEK composite 

where the fibres were 15 times stiffer than the polymer matrix [86].   

 

The water-treated composites are formed into a hemispherical dome structure 

immediately after reaching the maximum moisture ingression level. The surface 

moisture and the wet paint behave like a layer of lubricant lowering the friction between 

the specimen and the tools. Less restriction from the tools on material flow helps the 

composite to be drawn into the die cavity. This would account for the considerable 

reduction in average major strain deformation over the specimen surface, especially at 

the pole of the specimen (the reduction in strain deformation is around 40%). A more 

even distribution of strain deformation is observed in the water-treated sample, which 

indicates a uniform thickness in the manufactured part. This is important for 

manufacturing parts of high quality. It is therefore possible for parts to have a more 

evenly distributed thickness (at a forming depth of 20 mm) when it is saturated prior to 

forming. It seems that the water treatment can not only improve the formability of NFC 

materials, but also the quality of the formed parts.  
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                                                                        (a) 

 

    (b) 

Figure 6.11: Surface strain evolutions of water-treated specimen at a forming depth of 

20 mm, and 30 mm. (a) FLD; (b) Quantitative illustrations. 

 

The following section compares surface strain distributions of the water-treated 

composites at different forming depths, which provides insights to the change in 

material behaviour when forming depth increases. Figure 6.11 clearly suggests a change 

in major forming mode at different forming depths: from a combination of uniaxial 

tension and pure shear to pure shear. When the forming depth reaches 30 mm, the 

surface population, which experiences a strain ratio of less than -0.7, increases 
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remarkably from 16% to 28%. This also explains why the improvement in forming 

depth is larger than that observed in the elongation-to-failure obtained from tensile tests. 

The flax fibres are stretched at a constant rate during the entire tensile test. While in 

dome forming tests the major deformation mode of the composite switches to pure shear 

at large forming depths, such that the flax fibres are less strained due to the trellising 

behaviour. An overall increase in strain deformation is anticipated as the specimen is 

formed to a greater depth. It is noticed that most incremental strain appears in 

unsupported regions, especially along the shear direction. This means that the increase 

in average major strain is about 50% at the pole, much less than that at unsupported 

areas (77% and 123% increase in regions experiencing plane strain and pure shear, 

respectively). Therefore, the increased failure depth observed in the water-treated 

composite is a result of higher extensibility of flax fibres as well as the introduction of 

pure shear. The preheated sample could exhibit a larger forming depth due to similar 

mechanisms. Compared to preheating, the ductility increases more pronounced and the 

shear behaviour is more profound in water treatment, resulting in a superior formability 

observed in this work. 
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(a) 

 

 

(b) 

Figure 6.12: Comparison of surface strain deformation (a) FLD; (b) Quantitative 

illustrations. 
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The use of tailored blanks explores the effect of changing blank shapes on untreated 

specimens. The R90, R85, and R75 specimens exhibit failure at regions around the pole, 

whereas the R65 sample exhibits wrinkling at the flange regions. From the comparison 

illustrated in Figure 6.12, in the smaller samples there is a clear increase in the surface 

population that experiences a deformation mode of pure shear. The number of surface 

points is increased by more than 35 times (from less than 1% in the R90 sample to more 

than 35% in the R65 specimen). This is expected because the flax fibres are encouraged 

to be drawn into the die cavity, which lowers fibre strains and increases shear 

deformation. Under shear deformation, the flax fibres of the woven composite tend to 

rotate over each other within the ply in such a way that they are no longer perpendicular 

to each other. The formability of tailored blanks is improved by allowing matrix shear 

deformation, which contributes little to composite failure. Similar observations are also 

observed from preheated and water-treated composites, while unlike treated specimens 

which exhibit an increased ductility, the elongation-to-failure remains unchanged when 

a tailored shape is used. Therefore, the major mechanism behind the significantly 

improved formability of tailored blanks is to shift the strain deformation acting on the 

flax fibres to the polypropylene matrix.  

 

This section determines the mechanisms behind the improved formability of NFC 

materials under various treatments and blank shape change. It is concluded that the 

water treatment is more effective than preheating the samples, and the tailored shape is 

better than a circular blank. It is arguably that for creating production parts that need to 

undergo large deformation, a combination of water treatment and tailored blanks could 

be the optimal way to form this class of material system, as long as there are enough 

materials at the flange region to avoid wrinkling. 
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6.2.2 CNFC materials 

The previous section has shown the influence of the treatments and tailored blanks on 

forming behaviour of NFC materials, and this section studies whether such observations 

can be obtained in CNFC materials.  

 

6.2.2.1 Failure depth in dome forming tests 

It is concluded that the significantly improved elongation-to-failure makes it is very 

advantageous to process CNFC materials in the wet condition. It is therefore important 

to determine if such an increase in formability can also be achieved in dome forming 

tests. For CNFC materials, strain concentration is observed prior to catastrophic failure, 

and the material is considered to fail at the onset of strain concentration. Details of this 

are described later.  

 

Figure 6.13: Comparison of the forming depths of CNFC materials, at the onset of strain 

concentration (white bars) and at catastrophic failure (yellow bars). 

 

Figure 6.13 compares the forming depths of the composite in three different conditions 

of water treatment (untreated, water-treated and redried), as well as that of the 
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composite formed at the optimal forming temperature (T130) and that of the composite 

formed at the optimal tailored shape (R75). From tensile tests, it is anticipated samples 

in the dry conditions (untreated and redried) will exhibit almost identical forming 

depths in dome forming tests. Water treatment is much more effective than the 

traditional method in terms of improving formability, as the water-treated composite 

exhibits a much larger forming depth compared to the preheated equivalent sample. The 

effect of the traditional treatment, preheating, is very limited for CNFC materials for 

two reasons. Firstly, even though the composite can be stretched to a greater extent at 

high temperatures, this improvement is affected in dome forming tests by the reduced 

stiffness. Secondly, the material starts to degrade when the forming temperature 

approaches the melting temperature of the polypropylene matrix. The failure depth of 

the preheated composite (formed at the optimal temperature window of around 130 °C) 

is compared with the failure depths of the water-treated samples.  

 

After water treatment, dome forming tests show that there is a better correlation 

between the increase in forming depths during dome forming tests and from the 

elongation-to-failure obtained in tensile tests, and such increase cannot be achieved 

using preheated samples. A reduction in stiffness is noticed for both preheated and 

water-treated composites. The water-treated composites are painted and then formed 

immediately after reaching the maximum saturation level of the water solution, and the 

surface moisture at the flange region lowers friction between the specimen and the tools 

(the blank-holder and the die). Due to this effect, the amount of additional strain caused 

by reduced stiffness is lowered, resulting in a closer correlation between the increase in 

failure depths in dome forming tests and the improvement in the elongation-to-failure. It 

needs to be noted that the amount of improvement in elongation-to-failure still cannot 

be entirely mirrored in failure depths. Unlike NFC materials, the application of tailored 
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blanks cannot improve the formability of CNFC materials, such that all tailored blanks 

experience a forming depth close to that of the circular sample. The mechanisms of this 

observation are explained in details in a later section when surface strains are studied. 

 

During dome forming of CNFC materials, strain concentration is identified prior to final 

failure. This can be identified by surface strains as most additional strain deformation is 

confined in these areas, resulting in significantly higher strain deformation. Figure 6.14 

shows the effect of the forming temperature on the failure depths of the CNFC materials, 

first at the onset of strain concentration, and secondly at catastrophic failure, 

respectively.  

 

 

Figure 6.14: Failure depths of CNFCs at different temperatures: at the onset of strain 

concentration (blue) and catastrophic failure (red). 

 

It can be seen that the composite is able to be formed an additional amount of forming 

depths beyond the onset of strain concentration. It is noted that the additional depth in 

forming varies inconstantly with temperature. This could be attributed to the fact that 

the strain concentration area can either be fibre-rich or matrix-rich, and the composite 

will be able to withstand additional strain deformation if the strain concentration region 
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happens to be matrix-rich. On the contrary, at fibre-rich regions the composite would be 

very likely to exhibit failure almost immediately after the onset of strain concentration. 

For instance, one of the composites formed at room temperature exhibits failure 

immediately at the onset of strain concentration.  

 

In this study, to better compare the composite that formed in different conditions, CNFC 

materials are considered to fail at the onset of strain concentration. Based on Figure 6.15, 

the tested composite exhibits an insignificant increase in failure depth of, only 16.7%, 

from an average of 10.8 mm at ambient temperature to 12.6 mm at 130°C. However, a 

reduction in failure depth is evident when the forming temperature is above 150°C 

(because an additional 15°C is applied during preheating). This reduction can be 

attributed to the thermal degradation of the composite, a phenomenon that has been 

identified in Chapter 4 as due to the melting of the polypropylene matrix. Composites 

which are formed at temperatures above the thermal degradation temperature exhibit 

smaller failure depths than those formed at room temperature, suggesting that forming 

CNFC materials should not be formed at the temperatures beyond the melting point of 

polypropylene. 

 

It is important to notice that such a reduction is not observed in the elongation-to-failure 

from the tensile tests performed at high temperatures. To further examine this 

phenomenon, surface strain contour plots of the composites formed at 23°C, 130°C, and 

150°C are selected and compared at the same forming depth. Three temperatures are 

chosen because there is no temperature effect at the ambient temperature (23°C); the 

composite exhibits the optimal forming depth at a forming temperature of 130°C and 

composite starts to degrade at 150°C. 
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(a)                                     (b)                                      (c) 

Figure 6.15: Surface contour plots of composites formed at 23 °C (a); 130 °C (b); and 

150 °C (c). 

 

It is clear that, at the same forming depth prior to failure, the composite experiences 

much higher surface strain when it is formed at 150 °C. In dome forming tests when the 

amount of blank-holder force remains unchanged the stiffness of the composite is 

crucial to the amount of stretching and drawing experienced by specimens. A significant 

reduction in stiffness occurs at elevated temperatures, meaning that composite materials 

then experiences more stretching, and hence larger strain deformation. Therefore, even 

though CNFC materials can be stretched to a slightly larger extent at high temperatures, 

this effect is considerably affected by the additional strain deformation caused by the 

reduced stiffness. This also explains why the effect of forming temperature on the 

failure depth of the composite is very limited (only a 7.5% increase), compared to the 

increase in elongation-to-failure observed in high temperature tensile tests (around 

27.3%).  

 

6.2.2.2 Examination on the failure regions 

The following section presents the visual examinations on failed CNFC dome structures. 

It is noted that this class of material system exhibits very similar fracture behaviour of 
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fibre fractures unless forming above the thermal degradation temperature, leading to 

fibre pull-offs in addition to fibre fractures.  

 

   

(a)                                                                (b) 

 

(c) 

Figure 6.16: The CNFC sample. (a) Typical failure regions; (b) Typical punch load 

versus displacement curve; (c) Sample formed at a temperature of 160°C. 

 

Figure 6.16a shows a typical failure region exhibited in a tested CNFC sample, with a 

black rectangle emphasizing the area exhibiting fibre pull-off and reorientation. A large 

number of fractured fibres can be observed in the failure region of the composite. Flax 
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fibres are short and randomly oriented, and the failure region tends to propagate across 

rather than along the fibres due to the lower elongation-to-failure of the fibres compared 

to the polypropylene matrix. As a consequence, irregularly shaped fractured regions are 

observed in the tested composites. Based on the images taken by the ARAMIS™ 

system, most failure regions are initiated around the centre of the specimen which is 

deformed to the largest extent and hence experiences a higher state of strain 

deformation. During experiments, the punch is set to move down an additional amount 

of displacement to examine the post-failure behaviour of the composite. Figure 6.16b 

shows a typical punch load versus displacement curve obtained by the data acquisition 

system. The area under the curve represents the amount of energy absorbed by a 

specimen from the tools during forming, and the sudden levelling off in slope at a 

forming depth of around 10 mm indicates the onset of cracks. The chopped flax/pp 

composites exhibit a stable and slow drop in punch load after reaching the maximum 

load, suggesting that the composite exhibits a resistance to the propagation of cracks.  

 

It is worth noting that all CNFC samples, except the one formed at 160°C, share similar 

failure regions. The polypropylene matrix starts to melt when the forming temperature 

approaches 160°C, resulting in a dominant failure mechanism in which some fibres are 

pulled out of the matrix, while some fibre fractures are also observed, as shown in 

Figure 6.16c. Chopped flax fibres are randomly distributed in the composite, and it is 

observed that the pulled out fibres tend to reorient towards the centre of the specimen 

(due to the lack of support and restriction from the polypropylene matrix when it melts). 

This validates the conclusion that the pull-offs observed at elevated temperatures are 

caused by the near melt condition of the polypropylene matrix. 
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6.2.2.3 Effect of treatments on forming modes 

As stated in the previous section, failure depths are increased by 16.7% and 87% when 

CNFC materials are preheated and water-treated, respectively. The amount of 

improvement is less pronounced than the increase in elongation-to-failure observed in 

tensile tests (40% in preheated sample and 125% in water-treated sample). It is therefore 

important to determine the forming behaviour of CNFC materials during dome forming, 

which could provide insights into the reasons why the improvement in elongation-to-

failure cannot be translated to a significantly improved formability in dome forming 

tests. To determine this, surface strain deformation of the composites formed in 

different conditions is compared. Strain information of all surface points is provided by 

the ARAMIS™ system. 
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(a) 

       

 
(b) 

 

Figure 6.17: Comparison of surface strain distributions of CNFCs at different forming 

temperatures, (a) FLD; (b) Quantitative illustrations. 
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Figure 6.17.a shows the surface strain distributions of composite materials formed at 23 

˚C, 130 ˚C, and 150 ˚C at the stage just before failure. The composites experience 

similar surface principal strains distribution in FLD. Quantitative representations shown 

in Figure 6.17.b are used to help compare the composites formed in different conditions. 

All surface points are divided into different groups based on strain ratio. The population 

is plotted as a bar chart and the average major strain is expressed in a line. Based on this 

quantitative comparison, despite the fact that the T23 experimental case has a relatively 

flatter strain distribution, all composites exhibit a major deformation mode of plane 

strain regardless of the forming temperature. For example, 52%, 69% and 69% of 

surface points experiencing a strain ratio in between -0.3 and 0.3 for the T23, T130 and 

T150 sample, respectively. This can be expected from the isotropic nature of the 

composites, since the chopped flax fibres are randomly distributed. It seems that 

temperature has insignificant influence on the major deformation mode of the composite, 

which suggests that the improved formability of the preheated composite is a result of 

an increased elongation-to-failure at high temperatures. As a result of reduced stiffness 

at high temperatures, T130 and T150 specimens experience higher average surface 

strains as well as a very small increase in failure depth (the T23, T130 and T150 

samples exhibit strain concentration at forming depths of 11.8 mm, 13.3 mm and 9.6 

mm, respectively). The majority of strain deformation is confined to the pole and nearby 

regions, regardless of the forming temperatures. At the beginning of the dome forming 

test, most strain is confined to the centre of the specimen, and then shifts to nearby 

regions at larger forming depths due to the friction between the punch and the specimen.  

  

Surface points in unsupported regions experience plane strain during dome forming 

tests, and the amount of strain in this area is closely related to the amount of stretching 

experienced by the composite. When the composite degrades at temperatures 
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approaching the melting temperature of polypropylene, the stiffness of the composite is 

significantly reduced. This results in more surface points exhibiting plane strain, and 

more importantly much higher average major strain in this deformation mode (the 

average major strain is almost double that of the composite formed at room 

temperature). Observations clearly suggest that preheating is not very effective in 

improving the formability of this class of material systems, and that at elevated 

temperatures (prior to the thermal degradation of the composite) the increase in failure 

depth is dominated by the increase in elongation-to-failure. 
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(a) 

              

 
(b) 

 

Figure 6.18: Comparison of surface strain distributions of CNFCs in different 

conditions of the water treatment. (a) FLD; (b) Quantitative illustrations. 
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Although the water-treated composite could be formed to a greater depth, the surface 

strain distributions are compared at a forming depth when the untreated specimen first 

exhibits strain concentration. Similar to the observations on the preheating treatment, 

the composites formed in different conditions of water treatment share a similar surface 

principal strain distribution in FLD shown in Figure 6.18.a. According to the 

quantitative comparison, all specimens exhibit a major deformation mode of plane 

strain, such that 52%, 48%, and 54% of surface points exhibit a strain ratio between -0.3 

and 0.3 for the untreated, water-treated and redried specimen, respectively. It seems that 

the water treatment also has an insignificant effect on the major deformation mode. The 

water-treated composite exhibits a reduced stiffness, which would lead to additional 

strain deformation as the composite could be stretched to a greater extent at the same 

forming depth. However, the increase in average surface major strain is not pronounced, 

and is much less than that observed in the preheated samples. As stated previously, this 

can be attributed to the reduced friction between the composite and the tools caused by 

the surface moisture of the water-treated composite.  
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(a) 

    
(b) 

Figure 6.19: Comparison of surface strain distributions at different depths of the water-

treated sample. (a) FLD; (b) Quantitative illustrations. 

 

To further examine the effect of water treatment, the surface strain distributions of the 

water-treated composite are compared at forming depths of 12 mm and 18 mm in Figure 

6.19. It can be seen that, although the water-treated sample exhibits a higher state of 

strain deformation at a larger forming depth, the major deformation mode remains 

unchanged. Much higher strain at positive strain ratios is observed at a larger forming 

depth, suggesting that most additional strain deformation is confined to the pole and 

nearby regions. The improved formability observed in the water-treated composite is 
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mainly caused by increased failure strain. In dome forming tests, there are two reasons 

why the water treatment is more effective than the preheating: the major reason is that 

the water treatment can more effectively improve the elongation-to-failure of the 

composite; secondly, the surface moisture of the water-treated composite could reduce 

the friction between the contacting tools and the specimen during forming, thereby 

lowering strain deformation by encouraging the sample to be drawn into the die cavity. 
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(a) 

 

 

(b) 

Figure 6.20: Comparison of surface strain deformation of tailored CNFC samples. (a) 

FLD; (b) Quantitative illustrations. 
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This study also uses a tailored geometry in dome forming tests where circular samples 

are tailored in such a way that four areas are cut at 0°, 90°, 180° and 270° from the 

sample edge. The application of this geometry is to introduce an imbalance in the way 

material flow is restricted (with less restriction along the cutting directions). For all 

tailored CNFC specimens, failure initiates at the pole and nearby regions. Figure 6.20 

shows clearly that all tailored CNFC materials exhibit very similar surface strain 

deformation at the stage of comparison. It is difficult to distinguish one from another 

from the FLD. Based on the quantitative representations, the major deformation mode 

of composites remains in plane strain, regardless of the geometry of the tailored blanks. 

This can be anticipated from the fibre reinforcement nature of CNFC materials. Since 

the composite predominantly behaves like an isotropic material due to the random 

distribution of the chopped flax fibres, the reduced areas at the flange region can only 

contribute a lesser amount of friction along the cutting directions. This effect is limited 

as flax fibres at other orientations can still be strained and fractured at a similar forming 

depth. Unlike the preheating and the water treatment which increases the failure strain 

of the composite, the use of tailored blanks does not alter the limiting strain deformation. 

Therefore, in tailored blanks there is very little change in failure depths.  

 

It is seen that the treatments used in this study can improve the formability of CNFC 

materials in dome forming tests to some extent. However, the amount of improvement 

is less than the increase in failure strain observed in uniaxial loading tests. In addition, 

the effect of the novel geometry, tailored blanks, is also not pronounced in dome 

forming tests. Unlike NFC materials which exhibit directionality due to its aligned fibre 

reinforcement, CNFC behaves predominantly like an isotropic material due to the 

randomly distributed chopped flax fibres, resulting in incapacity of introducing shear 

behaviour of materials in dome forming. Short fibres are usually used for the sake of 
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better recycling at the end of its life cycle, and this study has found that the application 

of chopped fibres would also affect the formability of composite materials, as well as 

the effects of additional treatments and blank shape change.  

 

6.3 FEA simulations 

The same geometry setup used in stretch forming can be used in dome forming FEA 

simulations, although boundary conditions are defined differently. Pre-stretch is not 

included in dome forming tests as the lock-ring tool is not used. Instead a force is 

applied on the blank-holder to simulate the BHF effect, and just like pre-stretch, this 

action is simulated in the step prior to the actual forming step. Venkatesan [18] 

proposed a three points analysis method to study the forming behaviour of woven 

composites in dome forming tests. This approach is used to validate the FEA 

simulations. Due to the orthotropic nature of NFC materials, different regions in the 

composite specimen exhibit different deformation mechanism. Three points are chosen 

to exemplify three major deformation modes experienced during forming and are 

illustrated in Figure 6.21. Point A is located at the pole of the sample and exhibits bi-

axial stretch behaviour.  Point B is located 40 mm from the pole and is aligned in the 

fibre direction. Point B exhibits plane strain conditions. Point C is located 40 mm away 

from the pole and is located at angle of 45 ˚ to the fibre direction.  Point C exhibits pure 

shear or drawing behaviour. These three deformation mechanisms represent three major 

forming modes in stamp forming. For CNFC materials, only two points are of interest 

as point B and C behave identically. It is noted that since the water-treatment is the most 

effective treatment, this thesis considers only the untreated, water-treated and redried 

composites in FEA simulations.  
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Figure 6.21: Locations of points of interest (A, B and C). 

 

One of the contributions of this thesis is that it determines the forming limits of natural 

fibre composites from stretch forming tests. This section investigates whether these 

forming limits can be used to predict failure in forming practice that involves more than 

one forming mode. FEA models are also able to provide information at the flange 

region which cannot be observed by ARAMIS™ during experiments. Flange 

displacement is investigated, which is a direct indicator of the amount of material drawn 

into the die cavity during dome forming tests.   

 

6.3.1 NFC materials 

FEA simulations are developed to simulate the dome forming process of NFC materials, 

which are validated by comparing with strain evolutions at three points of interest. The 

efficiency of the new FLC proposed in Chapter 5 is then determined through the 

A 

B 

C 
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comparison with failure regions and failure depths observed in FEA simulation and 

experiments.         

 

6.3.1.1 Strain evolution at the points of interest 

       

(a)                                                              (b) 

        

                                        (c) 

Figure 6.22: Strain evolution at points of interest. (a) Untreated; (b) Water-treated; and 

(c) Redried. 

 

To obtain an understanding on the forming behaviour of NFC materials in dome 

forming tests, the evolution of major strain is analysed at points of interest. For this 

comparative study, the NFC is formed in different conditions of water-treatment at a 

BHF of 7 kN and a feed rate of 20 mm/s. Figure 6.22 illustrates that greater forming 

depths are allowed for the water-treated NFC compared to the dry equivalent samples, 
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which is expected from the significantly increased elongation-to-failure observed in 

tensile tests. For the untreated composite, the pole experiences larger strain deformation 

compared to unsupported areas. The redried sample shares similar strain evolutions at 

the points of interest as the composite exhibits very similar tensile properties. For the 

water-treated composite, strain deformation at the pole starts to level out at a forming 

depth of 12 mm, while point B rises linearly during forming. Unlike these two points, 

point C increases exponentially and then linearly, surpassing point B and A at a forming 

depth of 10 mm and 20 mm respectively. This suggests a change in major deformation 

mode of the water-treated composite at larger forming depths. The additional strain 

deformation shifts from the pole to nearby regions, especially along the 45°/-45° 

directions. The greater forming depths observed in the water-treated composite are 

permitted due to a large amount of shear deformation, which agrees with the 

experimental observations. A reasonable agreement between the experimental outcomes 

and FEA simulations is seen, meaning that the biaxial-stretch, plane strain, and pure 

shear behaviour of the composites at different locations can be successfully simulated. 

Unlike the experiments where the increases and decreases are more rapid, major strain 

evolves more gradually in FEA models as a result of the homogenised material 

properties in numerical simulations.     
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6.3.1.2 Validating the new FLC in different forming conditions 

  

  
 

Figure 6.23: Comparison of failure regions observed on the formed samples and those 

suggested by FEA simulations, left: untreated; right: redried. 

 

The failure for NFC materials in the wet condition cannot be captured by FEA due to 

the fact that no failure is observed for the largest allowable depth of forming for 

experiments. The new FLC therefore only applies to the untreated and redried materials. 

Figure 6.23 shows that FEA simulations can predict the regions where failure initiates 

during dome forming. In dome forming experiments, the pole experiences biaxial 

stretch, and the high level of fibre strains causes the onset of failure around this region, 

regardless of the forming conditions. Due to the woven structure of the composite, NFC 

materials start to exhibit a major deformation mode of pure shear at large forming 

depths. More importantly, additional strain deformation generated at large forming 

depths acts on the polypropylene matrix rather than the flax fibres. Figure 6.24 

compares the failure depth of experimental observations and FEA simulations. This 
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comparison validates the efficiency of the new FLC in predicting the failure behaviour 

of woven natural fibre composites in dome forming tests.  

 

Figure 6.24: Comparison of failure depths observed in experiments (blue) and those 

suggested by the new FLC (red). 

 

6.3.1.3 In-plane displacement at the flange region 

Figure 6.25 shows that flange in-plane displacements are dominated by fibre directions, 

regardless of water treatment. A larger difference in the amount of flange in-plane 

displacement is observed in the water-treated composite compared to other equivalent 

specimens. This agrees with the hypothesis that even though the fibre stiffness is 

reduced, the composite becomes more anisotropic after water treatment. There is a 

significant amount of material drawing into the die cavity in the water-treated specimen 

at large forming depths. In-plane displacements at the flange region increased by more 

than 12 times (from less than 1 mm at a forming depth of 19 mm to 12 mm at a forming 

depth of 40 mm). The water-treated composite is stretched and strained along the off-

fibre directions, this agrees with the observation that the composite starts to exhibit a 

major deformation mode of pure shear at large forming depths.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 6.25: Flange displacement of the composite at a forming depth of 19 mm. (a) 

untreated; (b) water-treated; (c) redried; and (d) water-treated specimen at a forming 

depth of 40 mm. 
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6.3.2 CNFC materials 

6.3.2.1 Strain evolution at the points of interest 

            

(a)                                                            (b) 

          

                                           (c) 

Figure 6.26: Strain evolution at points of interest for (a) Untreated; (b) Water-treated; 

and (c) Redried samples. 

 

Figure 6.26 shows the evolution of major strain at points of interest. Untreated, water-

treated and redried CNFC materials are formed until failure at a BHF of 7 kN and a feed 

rate of 20 mm/s. Regardless of water treatment, the pole of the composite experiences a 

larger major strain compared to the unsupported edge during the entire strain evolution, 

indicating that most strain deformation is confined within the central area of the 

composite. This correlates well with the finding obtained in the previous sections that 

major cracks initiate around the pole of the specimen. Fibre fracture is the major failure 
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mechanism exhibited in the composite, and the flax fibres which are most strained 

fracture early. Even though the water-treated composite exhibits a greater forming depth 

compared to dry equivalent specimens, the strain deformation evolves in a similar 

pattern in different conditions. It is found that the CNFC material exhibits an unchanged 

major deformation mode, and the improved forming depth is a result of increased failure 

strain. Water treatment results in an increase in major strain measurement at failure 

from 2.88% to 4.65% at the pole and 1.18% to 3.15% at point B. The unsupported 

region starts to be strained beyond a forming depth of 3 mm, resulting in a reduced 

slope in strain evolution at the pole. This phenomenon can be captured in FEA 

simulations, and is illustrated in Figure 6.26. 

 

6.3.2.2 Validating the FLC in different forming conditions  

Similar to Section 6.3.1.2, the FLC for CNFC is validated in this section through two 

aspects: the location where the failure initiates, and the punch displacement at the onset 

of failure. 
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Figure 6.27: Comparison of failure regions observed in formed CNFC samples and that 

suggested by FEA simulations (red). Left: untreated; Middle: water-treated; Right: 

redried. 

 

The FLC is constructed for CNFC materials based on experimental observations from 

stretch forming tests. This section incorporates this failure criterion in FEA simulations 

through a user-defined material subroutine, and compares them with experimental 

results. In this UMAT, the indicator is turned on when the FLC is met at this mesh point, 

otherwise it remains off. The red regions in the contours obtained from FEA simulations 

suggest the onset of failure. It is noted that the contours in the Figure 6.27 above are 

obtained at the stage when the failure first initiates. Good agreement on failure regions 

is observed, with the failure initiating at either the pole or nearby regions, regardless of 

treatment conditions. As stated previously, the composite is formed to an additional 

displacement beyond the onset of failure, producing large regions of failure in the 

formed samples. The aim of this study is to predict the onset of failure, while the shape 
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of the catastrophic failure is not within the scope of this work. In addition to failure 

regions, FLC also suggests reasonable forming depths at which the failure initiates. 

Overall, good agreement is obtained between the failure depths suggested by the FLC 

and that observed in the tested samples, as shown in Figure 6.28.  

 

Figure 6.28: Comparison of forming depths observed in experiments (blue) and those 

suggested by FLC (red) in different forming conditions. 

 

6.3.2.3 In-plane displacement at the flange region 

FEA simulations are able to provide information about the flange region which cannot 

be observed from the ARAMIS™ system during forming, such as the in-plane 

displacement at the flange region. This information indicates the amount of material 

drawn into the die cavity, which is closely related to the material stiffness, forming 

depth, and contact friction.  
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(a) 

 

(b) 
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.  

(c) 

 

(d) 

Figure 6.29: Flange displacement of the CNFC at a forming depth of 10 mm. (a) 

untreated; (b) saturated; (c) redried specimen; and (d) the saturated specimen at a 

forming depth of 17 mm. 
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Figure 6.29 shows that at small forming depths, composites experience a small amount 

of in-plane displacement deformation at the flange region. It is anticipated that 

composites formed in dry conditions (untreated and redried) experience a similar 

amount of flange displacement, while that of the water-treated composite is not much 

different. This can be attributed to the combination of reduced stiffness (to reduce 

flange displacements) and lower contact friction caused by surface moisture (to increase 

flange displacements). When the forming depth increases from 10 mm to 17 mm, a 

slightly larger in-plane displacement at the flange region is observed. This agrees with 

the observations obtained earlier that there is no change in major deformation mode of 

CNFC materials in dome forming tests. It is also important to note that in-plane 

displacement in the flange region exhibits no directionality, and decreases gradually to 

the sample edge.   

 

6.4 Summary 

This Chapter has investigated the forming behaviour of both NFC and CNFC in dome 

forming tests, with a particular focus on the mechanisms behind the improved 

formability of preheated and water-treated composites. Specimens experience two major 

deformation mechanisms of stretching and drawing. Based on visual observations of the 

tested samples and microscopic examinations of fractured surfaces, fibre fracture is 

identified as the dominant failure mechanism for both composites. At a forming 

temperature of 160 ˚C, fibre pull-out is also observed in addition to fibre fracture. This 

study has shown that due to the thermal degradation of composites there is an optimal 

temperature window for forming. For CNFC materials, it is found that the specimen 

experiences strain concentration prior to catastrophic failure, and the punch 

displacement between these two levels can vary from sample to sample based on the 

local fibre loading. To better compare specimens formed in different conditions, the 
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CNFC is considered to fail at the onset of strain concentration. One of the key finding of 

this study is that water treatment is superior to preheating treatment, with the water-

treated composites withstanding a considerably larger forming depth compared to the 

preheated equivalents. These observations suggest that it would be very advantageous to 

process natural fibre composites in the wet condition. By studying surface strain 

deformation at various forming conditions, it is found that the improved formability of 

treated CNFC materials is mainly driven by increased elongation-to-failure. In 

additional to the fact that the strain deformation increases with a steeper slope at larger 

forming depths, a wider forming envelope of CNFC materials in wet condition could 

not be translated to a forming depth with similar improvement. Unlike CNFC materials, 

an improved formability of treated NFC materials is due to a combination of increased 

ductility as well as the introduction of pure shear. This in turn leads to significantly 

increased forming depths in dome forming tests. Novel geometries of natural fibre 

composites, where some areas have four cut-outs at the sample edge (at 0˚, 90˚, 180˚ 

and 270˚), are used in dome forming tests. The tailored shape encourages materials to 

draw into the die cavity along the cutting directions. It is found that the effect of tailored 

blanks is pronounced for NFC materials, but very limited for CNFC materials. This can 

also be attributed to differences in the nature of the fibre reinforcement. It seems a 

trade-off needs to be made between better recycling at the end of life cycle (CNFC) and 

superior formability (NFC) especially under treatments and blank shape change. 

 

In FEA simulations, a force is set up to act on the blank-holder in a way that simulates 

the effect of BHF. By comparing these results with experimental observations, it is 

found that the failure criteria obtain in Chapter 5 can predict the region where the failure 

initiates as well as the punch depth at the onset of failure. These observations could 

verify the failure criteria to predict the onset of failure of this class of material systems 
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in different forming practices. In addition to validating the failure criteria, FEA models 

can also provide information at the flange region which is hidden from view by the die 

and blank-holder. For NFC materials, the amount of in-plane displacement depends on 

the directions of the fibres, whereas for CNFC materials it is distributed equally in all 

directions. Finally, water-treated composites are found to experience significantly more 

flange displacement at larger forming depths, suggesting that there is a change in the 

major deformation mode to pure shear. This matches with the observations obtained 

from ARAMIS™. This Chapter validates the effectiveness of the new FLC for NFC in 

dome forming tests where samples could experience more complicated forming modes 

(stretching and drawing) than that experienced in stretch forming. This is concluded that 

the FLC proposed in this study could be used to effectively predict the failure behaviour 

of woven composites in rapid forming processes. 
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Chapter 7  

Conclusions and Future Work 

7.1 Introduction 

This work is designed to answer two key questions regarding the forming of natural 

fibre composites. The first one is when does failure initiate in this class of material 

systems, and what is the most effective measure for predicting it? To answer this 

question, hourglass samples are stretched and then formed through the stamping press 

machine. The ARAMIS™ system beneath the press machine provides displacement and 

strain deformation which could be used to determine the failure behaviour of the 

composites. The second relates to how to improve the formability of natural fibre 

composites. The approach here is to perform dome forming tests in different treatment 

conditions, namely preheating, water treatment, and tailored blanks.  

 

7.2 Contributions 

➢ Significantly improved ductility is observed when natural fibre composites are 

saturated with water. Mechanical properties (elongation-to-failure, stiffness, and 

strength) can almost retain back to pre-treated levels after dried from wet 

condition. This makes it very advantageous to process natural fibre composites 

in wet condition. According to the SEM examinations on fractured surfaces, the 

changes in tensile properties of the chopped and continuous natural fibre 

composites are caused by different mechanisms.  

 

➢ Through stretch forming experiments, it is found that the conventional FLC is 

not suitable for predicting the failure initiated in woven natural fibre composite, 

as principal strains cannot differentiate the strain on the flax fibres and the 



Conclusions and Future Work 

192 
 

polypropylene matrix. This work has proposed a new FLC for woven 

composites which expresses limiting fibre strain as a function of forming mode 

calculated as the ratio of minor strain to major strain. Such a criterion requires 

tracking the evolution of fibre movements, and this was achieved using a real-

time strain measurement system (ARAMIS™). The problem with applying the 

conventional FLC for predicting the failure behaviour of NFC is that it has path 

dependency effect. The new FLC is superior to the conventional FLC because it 

can successfully eliminate this path dependency effect. This work has also 

demonstrated that the new FLC is more effective than the Maximum Strain 

failure criterion, highlighting the importance of the interactions between 

different constituents of woven composites. The new FLC will accommodate 

different composite material systems as long as the dominating failure 

mechanism is fibre fracture.  

 

➢ A key contribution of this study is that it has incorporated failure criteria into 

FEA simulations through development of a user-defined material routine. This is 

achieved through the application of SDVs in the UMAT. Based on the FEA 

models developed in this study, the failure criteria proposed in this study can be 

used to predict the onset of failure in natural fibre composites in different 

forming practices (stretch forming, dome forming) as well as in different 

forming conditions (untreated, water-treated, redried, and tailored blanks). 

 

➢ Preheating is a traditional treatment method usually used to improve the 

formability of materials in rapid forming processes. However, it is found that 

this conventional method is not very effective for natural fibre composites due to 

thermal degradation at high temperatures. It is found that the water-treated 
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composites could exhibit an almost doubled forming depth compared to that of 

the preheated equivalents. As well as requiring less energy, water treatment can 

be more effective than the conventional method used to form this class of 

material system. This fundamental breakthrough in improving the formability of 

natural fibre composites can aid in rapid forming of this class of material system. 

Due to the directionality of NFCs, improved formability can also be achieved by 

cutting some areas of a circular sample in the fibre directions. This reduces the 

amount of strain deformation acting on the flax fibres by encouraging the flax 

fibres to be drawn into the die cavity in the fibre directions, and hence results in 

greater forming depths. This treatment can be as effective as preheating in dome 

forming tests. 

 

7.3 Future work 

➢ This thesis has looked into the effect of improving formability of natural fibre 

composites through varying chemical solutions, and among which the water 

solution is found to be the most effective. In the future, it would be valuable to 

look for any chemical medium that can potentially improve the formability 

beyond what is observed in this study. 

 

➢ For production parts, attention needs to be paid to spring back of natural fibre 

composites. It is expected that such composites would experiences a 

considerable amount of spring back when an applied load is released, and this is 

very likely due to the polypropylene matrix. It is crucial to quantify the amount 

of spring back at the end of rapid forming processes, and more importantly to 

determine if there are any methods to reduce it. 
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➢ Fibre-metal laminate (FML) is a sandwich structure consisting of two outer 

layers of monolithic metal alloys and a core of composite material. This class of 

material system can exhibit superior formability compared to monolithic metal 

alloys. The current work has found that, the water treatment is more effective 

than other treatments in terms of improving the formability of natural fibre 

composites. However, FML layers are glued together by melting adhesives, so 

any water treatment prior to FML manufacturing is therefore likely to be much 

less effective. In addition, the composite layer of FML can hardly absorb 

moisture when the entire sandwich structure is merged in water. Therefore, 

research effort is required to investigate how the formability of natural fibre 

composites based FMLs might be improved. Tailored blanks may be useful to 

the FML structure, but again this needs to be verified through experiments.  
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Appendix A 

Stress-strain behaviour of NFC materials in different 

conditions of the water treatment 

Untreated: 

𝐸1 = 916 − 8013 ∗ 𝐴𝑏𝑠(𝜀1) 

𝐸2 = 916 − 8013 ∗ 𝐴𝑏𝑠(𝜀2) 

𝐺 = 30 + 200 ∗ 𝐸𝑥𝑝(−10 ∗ 𝐴𝑏𝑠(𝜀3)) 

 

Water-treated: 

𝐸1 = 551 + 1112 ∗ 𝐴𝑏𝑠(𝜀1) 

𝐸2 = 551 + 1112 ∗ 𝐴𝑏𝑠(𝜀2) 

𝐺 = −631 ∗ (𝐴𝑏𝑠(𝜀3))
3
+ 826 ∗ (𝐴𝑏𝑠(𝜀3))

2
− 360 ∗  𝐴𝑏𝑠(𝜀3) 

 

Redried: 

𝐸1 = 895 − 8674 ∗ 𝐴𝑏𝑠(𝜀1) 

𝐸2 = 895 − 8674 ∗ 𝐴𝑏𝑠(𝜀2) 

𝐺 = 30 + 200 ∗ 𝐸𝑥𝑝(−10 ∗ 𝐴𝑏𝑠(𝜀3)) 
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Appendix B 

Stress-strain behaviour of CNFC materials in 

different conditions of the water treatment 

Untreated: 

𝐸1 = 1300 𝑀𝑃𝑎 

𝐸2 = 1300 𝑀𝑃𝑎 

𝐺 = 500 𝑀𝑃𝑎 

 

Water-treated: 

𝐸1 = 700 𝑀𝑃𝑎 

𝐸2 = 700 𝑀𝑃𝑎 

𝐺 = 269 𝑀𝑃𝑎 

 

Redried: 

𝐸1 = 900 𝑀𝑃𝑎 

𝐸2 = 900 𝑀𝑃𝑎 

𝐺 = 346 𝑀𝑃𝑎 
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